Appendix M.

Climate
APPENDIX M.

CLIMATE
APPENDIX M.

TABLES

Table M1. Summary of weather stations in the Las Cruces area...M-1

Table M2. Summary of average monthly precipitation, snowfall, temperature, and evaporation at the New Mexico State University weather stationM-2

ILLUSTRATIONS

(follow text)

Figure M1. Annual precipitation for the period of record 1959 to 2015 at the New Mexico State University Climate Center, COOP ID No. 298535.

Figure M2. Map of the Mesilla Basin and southern part of the Jornada del Muerto Basin showing Las Cruces city limits, and weather stations.
APPENDIX M.

CLIMATE

The New Mexico State University (NMSU) weather station, with a period of record from 1959 to 2015, indicates that average annual precipitation at Las Cruces is 9.18 in. Over the period of record, annual precipitation has ranged from a minimum of 3.44 in. in 1970 to a maximum of 14.83 in. in 1978 (Fig. M1). NMSU and other weather stations that record precipitation in Las Cruces area are listed in Table M1 and shown on Figure M2.

Table M2 summarizes average monthly precipitation, snowfall, temperature, and average monthly evaporation rates at the NMSU weather station. Average monthly precipitation at the NMSU weather station ranges from 0.21 in. in March and April to 2.04 in. in August. Average monthly maximum temperatures range from 57.4 degrees °F in December to 94.3 °F in June, and average monthly minimum temperatures range from 26.5 °F in January to 66.0 °F in July.

Table M1. Summary of weather stations in Las Cruces area

<table>
<thead>
<tr>
<th>station</th>
<th>latitude</th>
<th>longitude</th>
<th>elevation, ft amsl</th>
<th>period of record</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSU</td>
<td>N32°17'</td>
<td>W106°45'</td>
<td>3,880</td>
<td>4/1959 to present</td>
</tr>
<tr>
<td>Las Cruces Municipal Airport</td>
<td>N32°17'</td>
<td>W106°55'</td>
<td>4,453</td>
<td>10/1948 to present</td>
</tr>
<tr>
<td>Las Cruces</td>
<td>N32°18'</td>
<td>W106°46'</td>
<td>3,930</td>
<td>11/1944 to 12/1957; 1/2011 to present</td>
</tr>
<tr>
<td>Jornada Experimental Station</td>
<td>N32°37'</td>
<td>W106°44'</td>
<td>4,265</td>
<td>6/1914 to present</td>
</tr>
</tbody>
</table>

ft amsl - feet above mean sea level
NMSU - New Mexico State University
Table M2. Summary of average monthly precipitation, snowfall, temperature, and evaporation at the New Mexico State University weather station

<table>
<thead>
<tr>
<th>month</th>
<th>average monthly precipitation, inches</th>
<th>average monthly snowfall, inches</th>
<th>average monthly temperature, °F</th>
<th>average monthly evaporation, inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.47</td>
<td>0.68</td>
<td>57.7</td>
<td>26.5</td>
</tr>
<tr>
<td>February</td>
<td>0.35</td>
<td>0.46</td>
<td>62.5</td>
<td>30.0</td>
</tr>
<tr>
<td>March</td>
<td>0.21</td>
<td>0.12</td>
<td>69.2</td>
<td>35.5</td>
</tr>
<tr>
<td>April</td>
<td>0.21</td>
<td>0.07</td>
<td>77.2</td>
<td>42.5</td>
</tr>
<tr>
<td>May</td>
<td>0.32</td>
<td>0</td>
<td>85.5</td>
<td>50.4</td>
</tr>
<tr>
<td>June</td>
<td>0.65</td>
<td>0</td>
<td>94.3</td>
<td>60.0</td>
</tr>
<tr>
<td>July</td>
<td>1.56</td>
<td>0</td>
<td>94.0</td>
<td>66.0</td>
</tr>
<tr>
<td>August</td>
<td>2.04</td>
<td>0</td>
<td>91.8</td>
<td>64.3</td>
</tr>
<tr>
<td>September</td>
<td>1.38</td>
<td>0</td>
<td>87.0</td>
<td>57.3</td>
</tr>
<tr>
<td>October</td>
<td>0.87</td>
<td>0</td>
<td>77.9</td>
<td>44.8</td>
</tr>
<tr>
<td>November</td>
<td>0.45</td>
<td>0.44</td>
<td>66.2</td>
<td>32.7</td>
</tr>
<tr>
<td>December</td>
<td>0.67</td>
<td>0.94</td>
<td>57.4</td>
<td>27.0</td>
</tr>
<tr>
<td>annual</td>
<td>9.18</td>
<td>2.71</td>
<td>76.7</td>
<td>44.8</td>
</tr>
<tr>
<td>period of record</td>
<td>1959 to present</td>
<td>1892 to present</td>
<td>1892 to present</td>
<td>1892 to present</td>
</tr>
</tbody>
</table>

\(^{a}\) includes melted snow
Figure M1. Annual precipitation for the period of record 1959 to 2015 at the New Mexico State University weather station ID No. 298535.
Figure M2. Map of the Mesilla Basin and southern part of the Jornada del Muerto Basin showing Las Cruces city limits and weather stations.
Appendix N.

Water Distribution/Production Standard Operating Procedure on Hydrants Flushing, Las Cruces Utilities (LCU) Red Water Fact Sheet
I. **Purpose and Background**

Flushing the water system removes sediment from lines and keeps the entire distribution system refreshed. The process of “flushing” fire hydrants, however, is an important preventive maintenance activity in the City of Las Cruces. Fire protection is a critical component of water system operations and requires periodic field testing, particularly to assist in computer model calibrations and identify operational problems. This is an accepted industry practice and provides the necessary information to make system improvements and modifications. Fire protection is required by the international fire code and is recommendation by the American Water Works Association.

II. **Process**

Line Flushing Event:
1. Any personnel responding to a **line flushing event** must have a meter, air gap apparatus and hose that will be used to account for water being discharged from the hydrant being flushed. (All flushing will require metering and all water volumes must be reported to Water Resources Administrator at the end of each month)
2. Hydrant flushing will be for approximately 15 minutes to determine if the heavy Iron and Manganese color clears. If hydrant water clears prior to the 15 minutes flushing will be terminated.
3. **IF** the water does not clear after 15 minutes:
 - Locate the nearest wastewater collections system manhole to the flushing hydrant
 - Notify Wastewater Collection staff of the particular manhole that will be used to complete the hydrant flushing
4. Prior to opening manhole, street barricades should be set in the affected area where the water will be drained into the manhole with the appropriate cross connection control.(hose should never be dropped into the manhole due to possible cross connection)
5. Collection line must be closely monitored to avoid surcharging of line.
6. Meter reads will be logged for every hydrant flushing event.

Fire Flow Event
1. Fire flow testing should have the consent of the Utility Director
2. Appropriate notification to the public must be done 24 hours prior to event through PIO.
3. Fire flow testing does not require metering or water to be flushed into a manhole.
4. Fire flow testing must be coordinated through Technical Support in coordination with Water Operations.

No Waste Flushing
1. Identify areas of concern due to customer complaints and bring NO-DES in for a system flushing of the identified areas.
2. Staff will do a complete valve exercise of the identified area to allow us to isolate the system that will be flushed by the NO-DES system. This assures us that all water System valves are functional prior to the flushing event.
3. The identified area will be flushed and cleaned while injecting chlorine back into the system that will allow us to maintain a free chlorine residual of 0.4 mg/l.
Q: What is Red Water?
A: Red water is due to the naturally occurring minerals iron and manganese found in our water supply. Although the Las Cruces Utilities is not required by law to chlorinate our water, we do; it assures our community that we do not have coliform bacteria issues within the aquifer or water distribution system. However, even a tiny amount of chlorine can cause the iron and manganese to drop out of solution in the water, turning it red.

Q: Why does red water come out of faucets from time to time?
A: Because these minerals have changed from a liquid mineral to a solid mineral and settled out in the pipes. When an increase in water demand occurs, the settled minerals will move, which normally occurs in the summer when people are using more water.

Q: How does Las Cruces Utilities Water Resources Section get rid of red water?
A: Two methods have been adopted to minimize red water:
1) Phosphate is added to the water system to keep the iron and manganese in a liquid form, and
2) A fire hydrant flushing procedure is utilized in affected areas when red water complaints are received. This second method is used when multiple red water complaints are received in a specific area to minimize water loss.

Q: What should citizens do when they see red water?
A: Although the red water has no health risks associated with it, if you choose not to use the red water, turn off all your taps and please notify Las Cruces Utilities at 528-3511 so we can arrange for the system to be flushed in your area. As soon as the flushing is complete, run your cold water taps to clear the red water from your own lines.
Q: **Is there anything we should not do when we see the red water?**

A: It is recommended that you wait to do your laundry until the red water clears; so your clothing and other items in the washing machine are not discolored from washing them in red water.

Q: **Is the red water safe?**

A: Yes, it is an aesthetic (visual) quality and is perfectly safe.
Appendix O.

Drought and Water Emergency Response Plan
City of Las Cruces

Drought and Water Emergency Response Plan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Executive Summary</td>
<td>2</td>
</tr>
<tr>
<td>II.</td>
<td>Water Supply and Demand</td>
<td>2</td>
</tr>
<tr>
<td>III.</td>
<td>Definitions</td>
<td>3</td>
</tr>
<tr>
<td>IV.</td>
<td>Determining Severity Off Water Emergency</td>
<td>3-6</td>
</tr>
<tr>
<td>V.</td>
<td>Implementation Authority</td>
<td>7</td>
</tr>
<tr>
<td>VI.</td>
<td>General Response Measures</td>
<td>7</td>
</tr>
<tr>
<td>VII.</td>
<td>Special Response Measures and Expected Goals for Each Emergency Level</td>
<td>8-10</td>
</tr>
<tr>
<td>VIII.</td>
<td>Termination of Response Measures</td>
<td>11</td>
</tr>
<tr>
<td>IX.</td>
<td>Public Outreach</td>
<td>11</td>
</tr>
<tr>
<td>X.</td>
<td>Variances</td>
<td>11-12</td>
</tr>
<tr>
<td>XI.</td>
<td>Summary</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Exhibit A – Citywide Daily Production</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Exhibit B – Citywide Daily Minimum Tank Storage</td>
<td>14</td>
</tr>
</tbody>
</table>
I. EXECUTIVE SUMMARY

Drought is a natural phenomenon that has recurred at varying intervals throughout history. The City of Las Cruces Utilities Department defines drought as an extended period of below-average precipitation and/or river flow that stresses the City’s water supply by reducing the City’s well pumping capacity.

For planning purposes, City of Las Cruces’ water supply strategy is to have enough water to meet the customers’ water needs without compromising public health and safety. It is impossible to predict when drought will occur or how long it will last. Our water supply comes from deep aquifers that are not affected by long-term droughts of one to two years. Even though our main aquifer, the Mesilla Bolson, is replenished by the Rio Grande, a long-term drought that curtails water deliveries in the river and increased groundwater pumping can have an adverse effect on well pumping capacities.

It is the intent of the City of Las Cruces Utilities Department to recognize drought conditions early and respond appropriately. Our prime drought response goal is to reduce water use so that supply will be available for the most essential uses for the drought’s duration. Accordingly, we have developed this Drought and Water Emergency Response Plan (DRP) to identify triggering criteria, implementation authority, potential response measures, and variances. The DRP is also intended to respond to water emergencies that temporarily result in reduced water production or distribution.

If the City Council approves a DRP, it will be necessary to modify the City’s Water Conservation Ordinance concerning declared water emergencies.

II. WATER SUPPLY AND DEMAND

The City of Las Cruces Water Utility provides water to a population of approximately 74,000. Water supply comes entirely from 28 wells in the Mesilla Bolson and four wells in the Jornada Bolson. At this time, the City’s West Mesa wells are not included in this total because they are not connected to the valley water system. The peak system demand in the summer of 2002 was approximately 30,427,000 gallons per day excluding West Mesa customer demand. Even though the West Mesa production and distribution system is a “stand alone” system, the DRP would apply to its customers.

Weather is the single biggest factor affecting demand. Other factors affecting demand include population growth, the effects of the City’s long-term water conservation efforts, and water rates.
III. DEFINITIONS

The following definitions are used in the DRP:

Maximum system-wide pumping capacity: The total water pumped from all wells per day at 100% capacity.

Minimum system-wide storage requirement: System-wide water tank storage levels necessary to provide the following minimum capacities to ensure public health and safety:
- Operational storage (25% of maximum peak daily demand);
- Fire flow storage (6000 gallons per minute for four hours); and
- Emergency storage (20% of average day demand).

Operational storage: Amount of water in storage needed to satisfy peak daily demand. This storage is used when water demand exceeds pumping capacity.

Seven day moving average: Running average of the seven previous days which is updated daily.

Water Emergency: System failure due to hydrological, mechanical, electrical or any other condition that reduces the total system-wide pumping and/or storage capacity, which cannot be remedied within seven days. Most water emergencies such as a major line break can be repaired within seven days.

Goal: Targeted reduction in water use measured from the seven day moving average of system-wide water production when a Level I emergency is declared.

IV. DETERMINING SEVERITY OF WATER EMERGENCY

Water pumping and storage levels are monitored on a real-time basis through a state-of-the-art supervisory control and data acquisition (SCADA) system. This information is immediately available for daily assessment of drought or water emergency impacts on the water system.

The DRP is based on three levels of drought or water emergency, each of which is triggered by the expected or actual loss of pumping and/or storage capacity at any given time. Utilizing a seven day moving average of pumping and/or storage capacity, response levels will be determined as described below. Figure 1 and Exhibit "A" shows a condition where there is no water pumping emergency. Figure 2 and Exhibit "B" shows a condition where there is no tank storage capacity emergency.
Figure 1: No Emergency Capacity Condition

Figure 2: No Emergency Storage Condition
A. Level I - Mild

A Level I water emergency exists when either of the following conditions occur:

- **Condition 1.** When the seven day moving average of system-wide daily water production is within ten percent (10%) of the maximum system-wide water pumping capacity (Figure 3).

 ![Figure 3: Level I Emergency Capacity Condition](image)

- **Condition 2.** When the 7-day moving average of system-wide maximum daily tank storage falls within five percent (5%) of the minimum system-wide tank storage requirement (Figure 4).

 ![Figure 4: Level I Emergency Storage Condition](image)

System operations will determine when Condition 1, Condition 2 or both are used to trigger a Level I water emergency.
B. **Level II - Severe**

A Level II water emergency exists when the seven day moving average of system-wide water production is within ten (10%) percent of the maximum pumping capacity for 7 consecutive days (Figure 5).

![Figure 5 Level II Emergency](image)

Storage condition is assumed to be severe and is not used as a trigger.

C. **Level III - Critical**

A Level III water emergency exists when the seven day moving average of system-wide water production equals or exceeds the maximum pumping capacity for seven consecutive days (Figure 6).

![Figure 6 Level III Emergency](image)

Storage condition is assumed to be critical and is not used as a trigger.
V. IMPLEMENTATION AUTHORITY

Once a determination is made based on operational conditions that a drought or water emergency response level has been triggered, the following occurs:

A. Level I - Mild

The Utility Director advises the City Manager, who in turn declares a Level I emergency. City Council is informed immediately. Response measures are implemented automatically.

B. Level II - Severe

The Utility Director advises the City Manager, who in turn declares a Level II emergency. Mandatory response measures are implemented immediately. An emergency City Council meeting will be called for the Council to determine whether any of the discretionary response measures should be implemented.

C. Level III - Critical

The Utility Director advises the City Manager, who in turn declares a Level III emergency. Mandatory response measures are implemented immediately. An emergency City Council meeting will be called to determine whether any of the discretionary response measures should be implemented.

VI. GENERAL RESPONSE MEASURES

A. Increasing Water Supply. The City of Las Cruces Water Resources could increase its water supply in the event of a drought. There are several options for doing this, each presenting its own set of intergovernmental and technical considerations. Among the possibilities:

- Drill additional wells.
- Negotiate water supply agreements with other water providers.

B. Decreasing Water Demand. The City Water Resources' prime drought response is to reduce water use so that supply will be available for the most essential uses during the duration of the drought or water emergency. There are a wide variety of options that could be used to decrease water use. In general, it is expected that reductions would be voluntary during a mild drought, with mandatory measures being phased in if drought conditions become more serious. It is important to ensure that any discomfort, difficulty or potential loss is shared as equitably as possible across all customer classes.
VII. SPECIFIC RESPONSE MEASURES AND EXPECTED GOALS FOR EACH EMERGENCY LEVEL

A. Level I - Mild

1. Goal: 10% reduction in water use

2. Mandatory Response Measures to be Implemented by City Manager:
 - Initiate campaign to alert public to drought or water emergency and to response measures that they can expect if emergency continues or intensifies.
 - Begin vigorous enforcement of Water Conservation Ordinance.
 - Require that the City and request that other governmental entities reduce their own water use by 10% or more to demonstrate leadership in dealing with the crisis, and then publicize their results.
 - Notify water customers of the City Manager's action and the time framework for implementation of emergency response measures.
 - Contact special interest groups with heavy water use to get their ideas and support.
 - Publish suggestions for temporarily reducing water use.
 - Encourage City residents connected to private wells or a private water utility company to reduce water use.
 - Ask customers to voluntarily reduce outdoor water use using their own methods and water suggestions.
 - Discourage changes in landscape or establishment of new landscape that increase water demand.
 - Monitor drought response effectiveness, recommend adjustments monthly to City Manager, report to the public regularly, and document results.

B. Level II - Severe

1. Goal: 20% reduction in water use.

2. Mandatory Response Measures to be Implemented by City Manager:
 - Continue all measures initiated in Level I.
 - Require that the City and request that other government entities reduce their own water use by 20 percent or more to demonstrate leadership in dealing with the crisis, and then publicize the results.
• Establish and generate publicity about a Drought Response Hotline, and prepare Las Cruces Utilities and customer service employees to respond to drought-related questions and give information.

• Train and assign Las Cruces Utilities field services and meter reading personnel to:
 o Monitor outdoor water use.
 o Issue warnings and report to Codes Enforcement.

• Restrict outdoor vegetation watering

• Prohibit planting new lawns from seed or sod.

• Generate more intense public discussion and media involvement about water use priorities, ways to cut water use while minimizing impacts on landscape, and recovery planning.

• Intensify public discussion about water use priorities and ways to reduce water use, and involve the Las Cruces Fire Department more intensively in these public discussions.

• Intensify public information to reinforce the need for extreme measures.

• Encourage customers to voluntarily limit or eliminate non-essential water uses and provide guidelines.

• Publish extraordinary efforts of residential and commercial customers as examples of leadership.

• Perform water use audits for high-volume water users in all customer classes, advise them on ways to reduce water use and, where appropriate, recommend retrofit devices.

• Publish a do-it-yourself “water waste reduction” brochure for households and aggressively promote it by inserting it into water bills, by utilizing the City’s web site, and using other effective distribution methods.

• Further restrict vehicle washing.

• Monitor effectiveness and update City Council on a monthly basis.

3. Discretionary Response Measures Which May Be Implemented by City Council:

• Introduce drought pricing mechanisms such as a surcharge on water use in excess of the average daily per capita or per household consumption.

• Revoke waivers to franchised private water utilities for their customers within the City limits and require compliance with City’s outdoor vegetation watering restrictions.
C. Level III – Critical

1. Goal: 30% reduction in water use

2. Mandatory Response Measures to be Implemented by City Manager:
 - Continue all measures initiated in Level I and Level II.
 - Prohibit all fire hydrant uses except those required for public health and safety.
 - Require all hotels, motels, and bed and breakfast establishments to have only showerheads and faucet aerators meeting maximum flow rates of 2.5 gallons per minute as per the 1997 Uniform Plumbing Code Sec. 402.1-9.
 - Intensify reductions of outdoor water use:
 - Authorize Water Resources staff to assist Codes Department personnel in policing water conservation ordinance violations.
 - Prohibit all vehicle washing.
 - Prohibit filling private swimming pools.
 - Reduce the use of or close public and private swimming pools.
 - Require that ornamental fountains be turned off.
 - Impose further restrictions in landscape water use in proportion to the severity of the drought.
 - Restrict greenhouse and plant nursery water use.
 - Restrict water use for fertilization, pesticide and herbicide application by commercial enterprises or by individuals.
 - Prohibit all new landscaping including planting of trees and shrubs except for extremely drought resistant varieties such as cacti or mesquite.

3. Discretionary Response Measures Which May Be Implemented by City Council:
 - Refine or adjust drought pricing mechanisms.
 - Prohibit all outdoor water use except for subsistence irrigation of trees and shrubs.
 - Terminate water utility service if a violation is not immediately corrected after written notice is given to the customer or posted on the customer’s premises.
 - Impose a moratorium on new water connections.
VIII. TERMINATION OF RESPONSE MEASURES

A. Level I - Mild

Level I response measures may be rescinded by the City Manager when the triggering conditions have ceased to exist for at least seven consecutive days.

B. Level II - Severe

Mandatory Level II response measures may be rescinded by the City Manager when the triggering conditions have ceased to exist for at least seven consecutive days. Upon termination of mandatory Level II response measures, Level I response measures go into effect unless otherwise determined by the City Manager. Discretionary Level II response measures may only be rescinded or modified by the City Council.

C. Level III - Critical

Mandatory Level III response measures may be rescinded by the City Manager when the triggering conditions have ceased to exist for at least seven consecutive days. Upon termination of the mandatory Level III response measures, the mandatory Level II response measures go into effect unless otherwise determined by the City Manager. Discretionary Level III response measures may only be rescinded or modified by the City Council.

IX. PUBLIC OUTREACH

During a drought, it is essential that City staff communicate effectively not only with our customers, but also with other area water suppliers, local governments, and other groups who may be affected by the City's drought response.

During drought or water emergency conditions, Utility staff is directed to actively work with the City Public Information Office and other agencies to ensure the public is fully informed about the conditions affecting water supply.

X. VARIANCES

Customer specific variances may be granted in cases of hardship or very special conditions. Variances shall be submitted to the Utilities Director for review and recommendation. Final determination as to whether a particular circumstance warrants a variance will be made by the City Manager in consultation with the Legal Department.
A variance will be granted only if it is found that the requested water use is necessary to prevent an emergency condition relating to public health or safety, or extreme economic hardship; or essential governmental services such as fire and similar emergency services. Efforts made to conserve water at any time prior to onset of emergency conditions may be considered in granting a variance.

XI. SUMMARY

The DRP provides a technical approach to monitor water supply conditions using the City's SCADA system. Real time monitoring of water supply and storage are used to develop “triggers” of water emergency levels. Emergency levels are classified as Mild, Severe and Critical, depending on specific system conditions.

Each emergency level has a series of measures intended to reduce water use anywhere from ten (10) to thirty (30) percent during the duration of the emergency conditions. Measures may include the introduction of water pricing mechanisms as directed by the City Council.

While the options listed in the DRP are based on lessons learned here and from other water utilities during past droughts, it is important to understand that every drought is different and that the City Manager, in consultation with the Utilities Director, will adjust and refine measures based on actual drought conditions. This plan is intended to help the City of Las Cruces be better prepared when a drought or water emergency occurs.
Exhibit A
CITYWIDE DAILY PRODUCTION

Production Characteristics (million gallons)

7-Day M.V. AVE of Production
Production Capacity Threshold
Production Capacity
Exhibit B
Does not include the West Mesa System

Citywide Daily Minimum Tank Storage

- 7-Day Avg. of Minimum Storage
- Minimum Storage
- Storage Requirement Threshold
- Storage Requirement
Appendix P.

Water Conservation Ordinance, water rates, and Water Conservation Plan
COUNCIL BILL NO. 15-003
ORDINANCE NO. 2722

AN ORDINANCE REPEALING LCMC 1997, CHAPTER 28, ARTICLE VII, KNOWN AS THE WATER CONSERVATION ORDINANCE, IN ITS ENTIRETY AND ENACTING A NEW LCMC 1997, CHAPTER 28, TO ALSO BE KNOWN AS THE WATER CONSERVATION ORDINANCE.

The City Council is informed that:

WHEREAS, in 1999 the City enacted the Water Conservation Ordinance ("existing Ordinance") which was codified as LCMC 1997, Sections 28-301 through 28-307 and, thereafter, amended the existing Ordinance to provide for a drought and water emergency response plan and plan restrictions or prohibitions, which amendments were codified as LCMC 1997, Sections 28-308 and 28-309. Rather than further amending the existing Ordinance, the Utilities Department with the support of the Utilities Board and the City Attorney's office proposes to replace the existing Ordinance with a revised and simplified version; and

WHEREAS, the primary purposes of the new ordinance are twofold. First, the revisions will enable the Utilities Board to develop regulations to implement and enforce the new ordinance. Secondly, the revisions will enable the Utilities Board to implement an alternative approach to citations currently issued by Codes Enforcement officers and Municipal Court enforcement in order to reduce water wasting; and

WHEREAS, the Utilities Board recommended that the City Council repeal and replace the existing Water Conservation Ordinance in Board Resolution No. 13-14-032.

NOW, THEREFORE, Be it ordained by the governing body of the City of Las Cruces:

(I)

THAT LCMC 1997, Chapter 28, Article VII, known as the Water Conservation Ordinance, is hereby repealed in its entirety.
THAT LCMC 1997, Chapter 28, Article VII also to be known as the Water Conservation Ordinance, as shown in Exhibit "A" attached hereto and made part of this Ordinance, is hereby enacted.

THAT City staff is hereby authorized to do all deeds necessary in the accomplishment of the herein above.

DONE AND APPROVED on this 18th day of August, 2014.

APPROVED:

[Signature]
Mayor

ATTEST:

[Signature]
City Clerk

Moved by: Small
Seconded by: Smith

APPROVED AS TO FORM:

[Signature]
City Attorney

VOTE:
Mayor Miyagishima: Aye
Councillor Silva: Aye
Councillor Smith: Aye
Councillor Pedroza: Aye
Councillor Small: Aye
Councillor Sorg: Aye
Councillor Levatino: Aye
Sec. 28-301. Title; purpose.

This article shall be known as the Water Conservation Ordinance. This article shall both require and encourage all users of water within the City limits and all users of City-provided water outside of the City limits to reduce water consumption and waste.

Sec. 28-302. Applicability.

(a) The Water Conservation Ordinance and regulations developed to implement and enforce the Water Conservation Ordinance, and the Drought and Water Emergency Response Plan and regulations developed to implement and enforce the Drought and Water Emergency Response Plan as referenced and authorized in this article shall apply to all users of City-provided water and to all users within the City limits of water provided by water utility companies franchised by the City; however, any regulations that may be developed by the Utilities Board as provided in Section 28-304 that pertain to public safety, such as prohibiting water flowing onto public rights of way, shall apply to all water users within the City limits.

(b) Outdoor vegetation watering regulations that may be developed by the Utilities Board shall not apply to users of irrigation water provided by Elephant Butte Irrigation District; and shall not apply to users of water provided by mutual domestic water companies except when the City declares a Level II or Level III water emergency as provided in Section 28-306.

(c) A "person" who can be cited for violating the Water Conservation Ordinance, regulations developed to implement and enforce the Water Conservation Ordinance, the Drought and Water Emergency Response Plan or regulations developed to implement and enforce the Drought and Water Emergency Response Plan may be a property owner, the water utility customer of record for the property; a tenant or any person over the age of 18 years residing at or occupying the property; or an officer, manager or general agent of the property owner or of the business located on the property.

(d) A person cited for violating the Water Conservation Ordinance, regulations developed to implement and enforce the Water Conservation Ordinance, the Drought and Water Emergency Response Plan or regulations developed to implement and enforce the Drought and Water Emergency Response Plan may still be held liable regardless of the conduct or lack of conduct of an individual or business performing or responsible for performing landscaping or yard maintenance services on the property, or regardless of the effect of an automated water sprinkler or delivery system on the property.

Sec. 28-303. Water conservation plan.

The Utilities Board shall submit a Water Conservation Plan by separate Utilities Board resolution for acceptance and review by the New Mexico Office of the State Engineer. The Utilities Board shall update the Water Conservation Plan as often as required to maintain compliance with the City's water right permits.
Sec. 28-304. Regulations.

(a) The Utilities Board shall develop and approve regulations to implement and enforce the Water Conservation Ordinance by separate Utilities Board Resolution at a duly noticed public meeting. The regulations shall be posted on the City's Utilities Department website.

(b) A violation of these regulations shall be deemed to be a violation of the Las Cruces Municipal Code as authorized in Section 1-10(a).

Sec. 28-305. Municipal Court enforcement.

(a) Any person who is convicted in Municipal Court of violating any section of this article or any regulation developed by the Utilities Board as authorized in Section 23-304 shall be fined as follows based on the type of property and on the number of prior convictions.

<table>
<thead>
<tr>
<th>Type of property</th>
<th>1st conviction</th>
<th>2nd conviction</th>
<th>3rd and subsequent convictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential property</td>
<td>$50.00</td>
<td>$100.00</td>
<td>$250.00</td>
</tr>
<tr>
<td>Non-residential property</td>
<td>$100.00</td>
<td>$250.00</td>
<td>$500.00</td>
</tr>
</tbody>
</table>

(b) With respect to violations that are continuous in time, each day that the violation continues is a separate offense.

(c) Violations that are continuous in time may be abated by injunctive relief. The imposition of a criminal penalty does not prevent equitable relief.

Sec. 28-306. Drought and water emergency response plan.

(a) The City has enacted a Drought and Water Emergency Response Plan by separate City Council resolution to protect the public health, safety or welfare or to preserve the municipal water supply. The Utilities Board shall update the response plan as recommended by Utilities Staff to further protect the public health, safety or welfare or to further preserve the municipal water supply.

(b) The response plan shall minimally provide for the following:

1. Definitions of technical words used in the plan;
2. Measurable criteria for determining the severity of the water emergency;
3. Implementation authority for each level of water emergency;
4. Response measures for each level of water emergency;
5. Termination of response measures; and
6. Variances.

Date Revised: June 20, 2014
(c) The purpose of the Response Plan and subsequent updates will be to reduce water use within the City limits and within the City's water utility service area in the event of a declared water emergency caused by a drought or a temporary water emergency.

(d) After the City Manager publicly declares a Level 1 (mild), Level II (severe) or Level III (critical) water emergency, the Utilities Board may implement additional regulations as authorized under its Bylaws.

(e) A violation of the Response Plan or additional regulations to implement and enforce the Response Plan shall be deemed to be a violation of the Las Cruces Municipal Code as authorized in Section 1-10(a).
ARTICLE VII. WATER CONSERVATION

Sec. 28-301. Title; purpose.

This article shall be known as the Water Conservation Ordinance. This article shall both require and encourage all users of water within the city limits and all users of city-provided water outside of the city limits to reduce water consumption and waste.

(Ord. No. 2179, § I, 4-4-05)

Sec. 28-302. Applicability.

(a) The restrictions contained in this article shall apply to all users of city-provided water and to all users of water provided by water utility companies franchised by the city; however, the water wasting restrictions contained in subsection 28-304(b)(1) shall apply to all water users within the city limits.

(b) The outdoor vegetation watering restrictions in section 28-303 and section 28-309 shall not apply to users of irrigation water provided by Elephant Butte Irrigation District. The outdoor vegetation watering restrictions in section 28-303 and section 28-309 shall not apply to users of water provided by mutual domestic water companies or from domestic wells except when the city declares a level II or level III water emergency as provided in section 28-309.

(Ord. No. 2179, § I, 4-4-05)

Sec. 28-303. Outdoor vegetation watering restrictions.

(a) All outdoor vegetation on residential and commercial properties located (i) on the even numbered side of the street shall be watered only on Tuesdays, Thursdays and Saturdays, and (ii) on the odd numbered side of the street shall be watered only on Wednesdays, Fridays and Sundays. For corner buildings or properties having both odd and even numbers, the number shown on the city’s or the franchised water companies’ utility records shall control.

(b) Outdoor vegetation shall not be watered on Mondays without a written variance.

(c) From April 1 to September 30, all outdoor watering of vegetation is prohibited between the hours of 10:00 a.m. and 6:00 p.m.

(Ord. No. 2179, § I, 4-4-05)

Sec. 28-304. Water wasting restrictions.

(a) The washing of vehicles and other types of mobile equipment shall be done only with a handheld bucket or a handheld hose equipped with a functioning shutoff nozzle for quick rinses. This restriction does not apply to the washing of vehicles or mobile equipment at a commercial carwash or commercial service station. When used in this subsection, the term "bucket" means a container holding five gallons of water or less.

(b) The following uses of water are defined as wasting water and are prohibited:

(1) Allowing water to flow onto adjacent property or onto any street, alley or other public right-of-way.

(2) Watering outdoor vegetation excessively so that water ponds on site.

(3) Failing to repair a water leak within five working days of the discovery of the leak.

(4) Washing sidewalks, driveways, parking areas, tennis courts, patios and other impervious surfaces with a hose, except in emergencies to remove spills of hazardous materials or to eliminate
dangerous conditions which threaten the public health, safety or welfare. When used in this subsection, the term "impervious surface" means any surface covered with nonporous material.

(Ord. No. 2179, § 1, 4-4-05)

Sec. 28-305. Penalty; injunctive relief authorized.

(a) Any person who is convicted of a violation of any section of this article shall be guilty of a petty misdemeanor and shall be punished as follows based on the type of property and on the number of prior convictions:

<table>
<thead>
<tr>
<th>Type of property</th>
<th>1st conviction</th>
<th>2nd conviction</th>
<th>3rd and subsequent convictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential property</td>
<td>$ 50.00</td>
<td>$100.00</td>
<td>$250.00</td>
</tr>
<tr>
<td>Nonresidential property</td>
<td>100.00</td>
<td>250.00</td>
<td>500.00</td>
</tr>
</tbody>
</table>

(b) For purposes of this article a "person" who can be cited may be one of the property owners; the water utility customer of record for the property; a tenant or any person over the age of 18 years residing at or occupying the property; or an officer, manager or general agent of the property owner or of the business located on the property.

(c) Persons cited pursuant to this article may still be held liable regardless of the conduct or lack of conduct of an individual or business performing or responsible for performing landscaping or yard maintenance services on the property, or regardless of the effect of an automated water sprinkler or delivery system on the property.

(d) With respect to violations that are continuous in time, each day the violation continues is a separate offense.

(e) Violations that are continuous in time may be abated by injunctive or other equitable relief. The imposition of a criminal penalty does not prevent equitable relief.

(Ord. No. 2179, § 1, 4-4-05)

Sec. 28-306. Exceptions to enforcement.

The following shall constitute exceptions from compliance with this article concerning outdoor vegetation watering restrictions and water wasting restrictions:

1. The water flow is a result of natural events such as rain or snow, unless the user is watering at the same time.

2. The water flow is a result of temporary malfunctions of or vandalism to the municipal water supply system.

3. The water flow is a result of water used for firefighting purposes, including the inspection and pressure testing of fire hydrants, or the use of water for firefighting training activities.

4. The use of water is required for the control of dust or the compaction of soil as may be required by municipal codes.
(5) The water is used to wash down areas where flammable or otherwise hazardous material has spilled, creating a dangerous condition.

(6) The water is used to prevent or abate public health, safety or accident hazards when alternate methods are not available.

(7) The water is used for routine inspection or maintenance of the municipal water supply system.

(8) The water is used to facilitate construction within a public right-of-way in accordance with city requirements and good construction practices.

(9) The use of the water is permitted under a written variance granted by the city’s utilities department in consultation with the legal department. The variance may be revoked in a declared water emergency.

(10) The water is used for street sweeping, sewer maintenance or other established utility practices.

(11) Watering contrary to the odd/even or time of day requirements is permitted for one day only where application of chemicals requires immediate watering to preserve an existing lawn.

(12) Watering contrary to the odd/even or time of day requirements is permitted for up to two weeks for newly planted outdoor vegetation.

(Ord. No. 2179, § I, 4-4-05)

The city shall enact a water conservation plan by separate city council resolution.

(Ord. No. 2179, § I, 4-4-05)

Sec. 28-308. Drought and water emergency response plan.

(a) The city shall enact a drought and water emergency response plan ("plan") by separate city council resolution in order to protect the public health, safety or welfare or to preserve the water supply.

(b) The purpose of the plan will be to reduce water use within the city limits and within the city’s water utility service area in the event of a declared water emergency caused by a drought or a temporary water emergency.

(c) The plan shall minimally provide for the following:

(1) Definitions of technical words used in the plan;

(2) Measurable criteria for determining the severity of the water emergency;

(3) Implementation authority for each level of water emergency;

(4) Response measures for each level of water emergency;

(5) Termination of response measures; and

(6) Variances.

(Ord. No. 2179, § I, 4-4-05)

Sec. 28-309. Plan restrictions or prohibitions.

(a) After the city manager publicly declares a level I (mild), level II (severe) or level III (critical) water emergency, the following activities or water uses may be restricted or prohibited by the city manager in compliance with the drought and water emergency response plan:

(1) Prohibit planting new lawns from seed or sod;
Further restrict or prohibit vehicle washing;

Prohibit all fire hydrant uses except those required for public health and safety;

Require all hotels, motels and bed and breakfast establishments to have only showerheads meeting maximum flow rates of 2.0 gallons per minute and faucet aerators meeting maximum flow rates of 2.2 gallons per minute;

Prohibit filling private swimming pools;

Reduce the use of or close private or public swimming pools;

Require that ornamental fountains be turned off;

Impose further restrictions in landscape water use in proportion to the severity of the drought;

Restrict nursery and plant nursery water use;

Restrict water use for fertilization, pesticide and herbicide application by commercial enterprises or by individuals;

Prohibit all new landscaping including planting of trees and shrubs except for extremely drought resistant varieties such as cacti or mesquite.

After the city manager publicly declares a level I (mild), level II (severe) or level III (critical) water emergency, the city council may do the following in compliance with the drought and water emergency response plan:

Introduce, refine or adjust drought pricing mechanisms for water;

Revoke variances;

Prohibit all outdoor water use except for subsistence irrigation of trees and shrubs;

Terminate water utility service if a violation is not immediately corrected after written notice is given to the customer or posted on the customer's premises;

Impose a moratorium on new water connections.

(Ord. No. 2179, § 1, 4-4-05)

PROPOSED
WATER CONSERVATION REGULATIONS

A. Outdoor vegetation watering restrictions.

1. All outdoor vegetation on residential and commercial properties located (i) at an even numbered street address shall be watered only on Tuesdays, Thursdays and Saturdays, and (ii) at an odd numbered address shall be watered only on Wednesdays, Fridays and Sundays.

2. For corner buildings or properties having both odd and even numbers, the number shown on the City's or the franchised water companies' utility records shall control.

3. Outdoor vegetation shall not be watered on Mondays without a written variance from the City's Utilities Department.

4. From April 1 to September 30, all outdoor watering of vegetation is prohibited between the hours of 10:00 a.m. and 6:00 p.m. without a variance from the City's Utilities Department.

B. Water wasting restrictions.

1. The washing of vehicles and other types of mobile equipment shall be done only with a handheld bucket or a handheld hose equipped with a functioning shutoff nozzle for quick rinses. This restriction does not apply to the washing of vehicles or mobile equipment at a commercial carwash or commercial service station. When used in this subsection, the term "bucket" means a container holding five gallons of water or less.

2. The following uses of water are defined as wasting water and are prohibited:
 a. Allowing water to flow onto adjacent property or onto any street, alley or other public right-of-way.
 b. Watering outdoor vegetation excessively so that water ponds on site.
 c. Failing to repair a water leak within five working days of the discovery of the leak.
 d. Washing sidewalks, driveways, parking areas, tennis courts, patios and other impervious surfaces with a hose, except in emergencies to remove spills of hazardous materials or to eliminate dangerous conditions which threaten the public health, safety or welfare. When used in this subsection, the term "impervious surface" means any surface covered with nonporous material.

C. Exceptions to compliance.

1. The following shall constitute exceptions from compliance with these regulations concerning outdoor vegetation watering restrictions and water wasting restrictions:
 a. The water flow is a result of natural events such as rain or snow, unless the water customer is watering at the same time.

Revised April 28, 2014
b. The water flow is a result of temporary malfunctions of or vandalism to the municipal or to a franchised water utility's water supply system.

c. The water flow is a result of water used for firefighting purposes, including the inspection and pressure testing of fire hydrants, or the use of water for firefighting training activities.

d. The use of water is required for the control of dust or the compaction of soil as may be required by municipal codes.

e. The water is used to wash down areas where flammable or otherwise hazardous material has spilled and created a dangerous condition.

f. The water is used to prevent or abate public health, safety or accident hazards when alternate methods are not available.

g. The water is used for routine inspection or maintenance of the municipal or franchised water utility's water supply system.

h. The water is used to facilitate construction within a public right-of-way in accordance with City requirements and good construction practices.

i. The use of the water is permitted under a written variance granted by the City's Utilities Department. The variance may be revoked in a declared water emergency.

j. The water is used for street sweeping, sewer maintenance or other established utility practices.

D. Variances.

1. A person seeking a variance from the outdoor vegetation water restrictions or from the water wasting restrictions shall complete a form provided by the City's Water Conservation Coordinator, who shall grant, deny or modify the requested variance within fifteen (15) days of receipt of the completed form.

2. A variance shall remain in effect for the period stated in the variance not to exceed one calendar year from the date of issue.

3. The standard variances shall be as follows:

 a. After chemical application – 1 day;

 b. To establish new sod – 30 days;

 c. To establish reseeded turf grass – 45 days;

 d. To establish newly seeded turf grass – 120 days; and

 e. Other at the discretion of the Water Conservation Coordinator.
E. Violation Compliance Procedures

1. The responsible parties from whom compliance shall be sought are specified in LCMC Section 28-302(c).

2. Violations of the water conservation regulations may be reported on the City's water waste hotline or on a designated City web page which shall be referred to hereafter as "reported violations", or the violations may be observed by City compliance staff which shall be referred to hereafter as "observed violations".

3. When a reported violation is received, compliance staff may contact the responsible party either in person or by leaving a door hanger or by telephone or by mail, and explain that a violation was reported and the nature of the violation; or compliance staff may visit the site, observe the violation, and thereafter follow the procedure for observed violations.

4. For the first observed violation, compliance staff shall document the violation as effectively as possible with existing equipment, and shall then contact the responsible party in person, if possible, otherwise by leaving a door hanger or by telephone or by mail, and shall explain that a violation was observed and the nature of the violation. Compliance staff shall also inform the responsible party by giving him or her a form letter in person or by mailing the form letter that he or she has 48 hours from receipt of the hand delivery of the form letter or five (5) days from the date on the mailed form letter to correct the violation by changing the water schedule or duration, by fixing the system malfunction, by shutting off the irrigation system until the problem can be resolved, or by securing a variance at the discretion of the Water Conservation Coordinator.

5. For a second or subsequent observed violation, compliance staff shall send a letter to the responsible party informing him or her of the nature of the violation and referencing the prior observed violations, and informing the responsible party that an administrative fee shall be assessed on and added to the City utility account for the property with the water meter registering the violation. For example, if water flowed onto a City street from a malfunctioning sprinkler system located at 123 Smith Lane, then the City utility account with the water meter registering the water wasting violation will be assessed the administrative fee.

6. For a second or subsequent reported violation, compliance staff shall send a letter to the responsible party informing him or her of the nature of the violation and referencing the prior reported violations, and informing the responsible party that an administrative fee may be assessed on and added to the City utility for the property with the water meter registering the violation.

7. For responsible parties who are customers of franchised water utilities with an active City utility account for other City utility services, the administrative fees will be assessed on the City utility bill.

8. For responsible parties who are customers of franchised water utilities without an active City utility account for other City utility services, the violations shall be referred to the City's Codes Section for compliance through its standard procedures including but not limited to issuing a citation.
F. Administrative Fees

1. Violators are subject to progressively higher administrative fees until the violation ceases or until a variance is granted. The administrative fees shall be progressively higher for violations separated by less than five (5) years. Fees shall be suspended pending the outcome of an appeal or variance request.

2. Fees assessed on active City utility accounts shall be paid within the normal payment period for the billing system.

3. The responsible person will also be sent a written notice that the City utility account will be or has been assessed an administrative fee.

4. In lieu of paying the first administrative fee, the responsible person may have a landscape water audit performed by an authorized landscape irrigation auditor certified by the Irrigation Association. Documentation of the audit and subsequent changes to correct the violation shall be submitted to compliance staff before the normal billing payment due date for the account.

5. No administrative fees will be assessed for reported violations unless the reporter leaves contact information and signs an affidavit documenting the time, date and nature of the violation hereafter referred to as a “documented reported violation”.

6. The schedule for assessment of administrative fees shall be as follows:
 a. First observed violation and first reported violation whether or not documented – no charge.
 b. Second observed violation and second documented reported violation - $20
 c. Third observed violation and third documented reported violation - $30
 d. Fourth observed violation and fourth documented reported violation - $40
 e. Fifth and subsequent observed or documented reported violation - $50

G. Codes Section Option:

1. Compliance staff may refer any violation, whether reported or observed, of the City’s Water Conservation Regulations to the City’s Codes Section for compliance.

2. The Codes Section with or without a referral from Utilities Department Compliance staff may respond to violations and seek compliance through its standard procedures including but not limited to issuing a citation.

H. Appeals to the Utilities Board.

1. A person who received a notice of the administrative fee assessment may appeal the administrative fee within thirty-five days from the date of the notice. The appeal shall be made on a form provided by the Utilities Department’s Water Conservation Coordinator, which form will also be available on the Utilities Department website. The completed appeal form shall be mailed to and received by, or hand delivered to the Water
Conservation Coordinator during regular business hours within the thirty-five day period. If the period ends on a weekend or holiday, the period shall be extended to the next regular business day.

2. The Water Conservation Coordinator shall schedule an appeal hearing at the next regularly scheduled Utilities Board meeting and shall so notify the person who may request a one month extension to the next regularly scheduled Utilities Board meeting.

3. The Utilities Department shall have the burden to prove by a preponderance of the evidence that a violation of a water conservation regulation occurred. The person shall have the burden of proof to prove any defense by a preponderance of the evidence.

4. The person may be represented at the hearing by a third party if he or she resides out of state or is otherwise unable to attend the hearing.

5. The decision of the Utilities Board shall be final.

PURPOSE(S) OF ACTION:

To repeal and replace an ordinance.

BACKGROUND / KEY ISSUES / CONTRIBUTING FACTORS:

In 1999, the City enacted the Water Conservation Ordinance ("existing Ordinance") which was codified as LCMC 1997, Sections 28-301 through 28-307 and, thereafter, amended the existing Ordinance to provide for a drought and water emergency response plan and plan restrictions or prohibitions, which amendments were codified as LCMC 1997, Sections 28-308 and 28-309. Rather than further amending the existing Ordinance, the Utilities Department with the support of the Utilities Board and the City Attorney's office proposes to replace the existing Ordinance with a revised and simplified version.

The primary purposes of the new ordinance are twofold:

First, the revisions will enable the Utilities Board to develop regulations to implement and enforce the new ordinance. At its request, the Utilities Board was provided with a copy of proposed regulations for a non-action review at its June 10th Board meeting. A copy of those draft regulations are attached as support information to give the Council an idea of what regulations may be approved by the Utilities Board at a subsequent Board meeting if the new ordinance is approved. The proposed regulations will closely track the existing restrictions and exceptions to enforcement currently set forth in LCMC 1997, Sections 28-303, 28-304 and 28-306. Enabling the Utilities Board to develop implementing and enforcing regulations will provide
the flexibility to adapt without having to formally amend an ordinance as is now required. The Utilities Department anticipates that the New Mexico Office of the State Engineer may be requiring more stringent water conservation requirements in response to pending litigation and the on-going regional drought.

Secondly, the revisions will enable the Utilities Board to implement an alternative approach to citations currently issued by Codes Enforcement officers and Municipal Court enforcement in order to reduce water wasting. Repeated violations of water wasting prohibitions continue to occur in part because the existing Ordinance has not been consistently or effectively enforced. The proposed regulations will provide an alternative compliance approach for reporting and observing violations, and with compliance staff contacting and educating violators by suggesting compliance options. If a compliance option is not implemented and violations continue to occur, administrative fees may be assessed on the responsible party's water bill. The assessment may be appealed to the Utilities Board.

The following list compares and contrasts the existing Ordinance sections with the new ordinance sections:

1. Current LCMC 1997, Section 28-301 entitled "Title; purpose": No changes are proposed.
2. Current LCMC 1997, Section 28-302 entitled "Applicability": This section has been substantially rewritten.
3. Current LCMC 1997, Section 28-303 entitled "Outdoor vegetation watering restrictions": This section has been deleted and those restrictions will become regulations to be approved and possibly modified by the Utilities Board.
4. Current LCMC 1997, Section 28-304 entitled "Water wasting restrictions": This section has been deleted and those restrictions will become regulations to be approved and possibly modified by the Utilities Board. A new LCMC 1997, Section 28-304 entitled "Regulations" directs the Utilities Board to develop regulations to implement and enforce the new Ordinance.
5. Current LCMC 1997, Section 28-305 entitled "Penalty; injunctive relief authorized": This section will be entitled "Municipal Court Enforcement" to differentiate it from the administrative fee assessments that are likely to be approved by the Utilities Board. Some provisions of current LCMC 1997, Section 28-305 have been transferred to new LCMC 1997, Section 28-302.
6. Current LCMC 1997, Section 28-306 entitled "Exceptions to enforcement": This section has been deleted and those exceptions will become regulations to be approved and possibly modified by the Utilities Board.
7. Current LCMC 1997, Section 28-307 entitled "Water Conservation Plan": This section has been reworded and will become new LCMC 1997, Section 28-303 also entitled "Water Conservation Plan".

Rev. 02/2012
8. Current LCMC 1997, Section 28-308 entitled "Drought and water emergency response plan": This section has been re-worded and will become new LCMC 1997, Section 28-306 also entitled "Drought and water emergency response plan".

9. Current LCMC 1997, Section 28-309 entitled "Plan restrictions or prohibitions": This section has been deleted. Some of its provisions have been transferred to new LCMC 1997, Section 28-306.

The Utilities Board recommended that the City Council repeal and replace the existing Water Conservation Ordinance in Board Resolution No. 13-14-032.

SUPPORT INFORMATION:

1. Ordinance.
4. Attachment "B", proposed Water Conservation Regulations that may be approved and possibly amended by the Utilities Board.

SOURCE OF FUNDING:

<table>
<thead>
<tr>
<th>Is this action already budgeted?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Expense reallocated from:
- Proposed funding is from a new revenue source (i.e. grant; see details below)
- Proposed funding is from fund balance in the Fund.

<table>
<thead>
<tr>
<th>Does this action create any revenue?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Funds will be deposited into this fund:
- There is no new revenue generated by this action.

BUDGET NARRATIVE

N/A
FUND EXPENDITURE SUMMARY:

<table>
<thead>
<tr>
<th>Fund Name(s)</th>
<th>Account Number(s)</th>
<th>Expenditure Proposed</th>
<th>Available Budgeted Funds in Current FY</th>
<th>Remaining Funds</th>
<th>Purpose for Remaining Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

OPTIONS / ALTERNATIVES:

1. Vote "Yes"; this action will approve the ordinance repealing and replacing LCMC 1997 Chapter 28, Article VII, and enact a new Water Conservation Ordinance.
2. Vote "No"; this action will retain existing LCMC 1997, Chapter 28, Article VII.
3. Vote to "Amend"; this action would allow the City Council to modify the provisions of the new LCMC 1997 Chapter 28, Article VII.
4. Vote to "Table"; this action would allow the City Council to table or postpone consideration of the new ordinance and to direct staff accordingly.

REFERENCE INFORMATION:

The resolution and/or ordinance listed below are only for reference and are not included as attachments or exhibits.

N/A
COUNCIL ACTION AND EXECUTIVE SUMMARY PACKET ROUTING SLIP

For Meeting of
July 21, 2014
(Ordinance First Reading Date)

For Meeting of
August 18, 2014
(Adoption Date)

TITLE:
AN ORDINANCE REPEALING LCMC 1997, CHAPTER 28, ARTICLE VII, KNOWN AS THE WATER CONSERVATION ORDINANCE, IN ITS ENTIRETY AND ENACTING A NEW LCMC 1997, CHAPTER 28, TO ALSO BE KNOWN AS THE WATER CONSERVATION ORDINANCE.

Purchasing Manager's Request to Contract (PMRC) (Required?) Yes ☐ No ☒

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>SIGNATURE</th>
<th>PHONE NO.</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft/Staff Contact</td>
<td></td>
<td>541-2128</td>
<td>6/30/14</td>
</tr>
<tr>
<td>Department Director</td>
<td></td>
<td>541-2128</td>
<td>6/27/14</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>541-2100</td>
<td>6/27/14</td>
</tr>
<tr>
<td>Assistant City Manager / CAO</td>
<td></td>
<td>541-2107</td>
<td>6/27/14</td>
</tr>
<tr>
<td>Management & Budget Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assistant City Manager / COO</td>
<td></td>
<td>541-2271</td>
<td>6/27/14</td>
</tr>
<tr>
<td>City Attorney</td>
<td></td>
<td>541-2128</td>
<td>6/27/14</td>
</tr>
<tr>
<td>City Clerk</td>
<td></td>
<td>541-2115</td>
<td>6/30/14</td>
</tr>
</tbody>
</table>

Rev. 8/2011
PROOF OF PUBLICATION

I, being duly sworn, Frank Leto deposes and says that he is the Publisher of the Las Cruces Sun-News, a newspaper published daily in the county of Dona Ana, State of New Mexico; that the notice 53967 is an exact duplicate of the notice that was published once a week/day in regular and entire issue of said newspaper and not in any supplement thereof for 1 consecutive week(s)/day(s), the first publication was in the issue dated July 27, 2014 and the last publication was July 27, 2014.

Defendant further states this newspaper is duly qualified to publish legal notice or advertisements within the meaning of Sec. Chapter 167, Laws of 1937.

Signed

Publisher
Official Position

STATE OF NEW MEXICO
ss.
County of Dona Ana
Subscribed and sworn before me this

27th day of July, 2014

Notary Public in and for
Dona Ana County, New Mexico

My Term Expires

NOTICE OF INTENT TO ADOPT

The City Council of The City of Las Cruces, New Mexico, Hereby Gives Notice of Its Intent to Adopt The Following Ordinance at a Regular City Council Meeting to be Held on August 18, 2014:

1. Council Bill No. 15-003; Ordinance No. 2722: An Ordinance Repealing LCMC 1997, Chapter 28, Article VII, Known as the Water Conservation Ordinance, In Its Entirety and Enacting a New LCMC 1997, Chapter 28, to Also be Known as the Water Conservation Ordinance.

Copies Are Available for Inspection During Working Hours at the Office of the City Clerk. Witness My Hand and Seal of the City of Las Cruces on this the 18th day of July 2014.

Esther Martinez-Carrillo, MMC
City Clerk

Pub #53967
Run Date: Jul 27, 2014
Legal Advertising Affidavit

Jamie Pfannenstiel, who, being duly sworn as the Advertising Assistant of the Las Cruces BULLETIN, a weekly newspaper of general distribution published in the City of Las Cruces, County of Doña Ana, State of New Mexico, disposes and states that the legal advertising for

CITY OF LAS CRUCES - CITY ATTORN

In the matter of:
NOTICE OF INTENT TO ADOPT Council Bill No. 15-003;
Ordinance No. 2722:

In accordance with the laws of the State of New Mexico, the attached was published in its entirety 1 time(s) in the Las Cruces BULLETIN, the first publication date being 07/25/2014 and subsequent publications being:

Jamie Pfannenstiel

Sworn to and subscribed before me this day 07/25/2014
in the
CITY OF LAS CRUCES
COUNTY OF DOÑA ANA
STATE OF NEW MEXICO
My Commission expires: May 6, 2017

Advertising Costs: $43.62
WATER

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Service</th>
<th>Sheet No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Service</td>
<td>W-2015-2</td>
</tr>
<tr>
<td>Small Commercial Service</td>
<td>W-2015-3</td>
</tr>
<tr>
<td>Large Commercial Service</td>
<td>W-2015-4</td>
</tr>
<tr>
<td>Large Multi-Unit Service</td>
<td>W-2015-5</td>
</tr>
<tr>
<td>Industrial Service</td>
<td>W-2015-6</td>
</tr>
<tr>
<td>Paz Well Municipal Parks Irrigation – Non-Potable</td>
<td>W-2015-7</td>
</tr>
<tr>
<td>Bulk Water Service – Hydrant Metered</td>
<td>W-2015-8</td>
</tr>
<tr>
<td>Parks</td>
<td>W-2015-9</td>
</tr>
<tr>
<td>Golf Course</td>
<td>W-2015-10</td>
</tr>
<tr>
<td>Parks and Golf Course Interruptible Time of Use</td>
<td>W-2015-11</td>
</tr>
<tr>
<td>Reclaimed Water Service</td>
<td>W-2015-12</td>
</tr>
<tr>
<td>Landscape Meter</td>
<td>W-2015-13</td>
</tr>
<tr>
<td>Connection Charges</td>
<td>W-2016-14</td>
</tr>
<tr>
<td>Litigation Cost Recovery Rate Rider</td>
<td>W-2016-15</td>
</tr>
<tr>
<td>Development Impact Fee Rate Rider</td>
<td>W-2016-16</td>
</tr>
<tr>
<td>Temporary Lease of Groundwater Rights</td>
<td>W-2015-17</td>
</tr>
<tr>
<td>Water Rights</td>
<td>W-2017-18</td>
</tr>
<tr>
<td>Water Outside City Limits Service Surcharge</td>
<td>W-2017-19</td>
</tr>
</tbody>
</table>
AVAILABILITY

Available in the Las Cruces Utilities water service area for the exclusive use of a single metered family residence for domestic purposes. Service to buildings attached to the residence, including garages and other minor buildings for the use of the residents, may also be through the residential meter. Service to a residence, which is used in part for commercial purposes but the predominant usage is for residential purposes, shall be served under this rate schedule.

Landscape water meter available per Landscape Meter schedule terms and conditions.

RATE

The bills are the sum of:

Domestic Meter

- **Access Charge**
 - Per month: $6.82

- **Volume Charge**
 - Summer Period (billing months of June, July, August, and September)
 - First 3,000 gallons: $0.70
 - Over 3,000 gallons: $2.08
 - Non-Summer Period (all other billing months)
 - First 3,000 gallons: $0.70
 - Over 3,000 gallons: $1.89

Tax and Fee

Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service Rates.

BILLING UNITS

The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
WATER
SMALL COMMERCIAL SERVICE

AVAILABILITY

Available in the Las Cruces Utilities water service area for any establishment engaged in the operation of a business, an institution, whether or not for profit, or government entities.

Such enterprises shall include, but not be limited to, clubs, hotels, motels, schools, hospitals, multi-unit complexes, churches, and municipal, county, state and federal buildings.

This rate applies to such customers whose consumption is less than 50,000 gallons for three (3) or more of the twelve (12) months of the rate class review period. The rate class review period is a period of twelve (12) consecutive billing months that Las Cruces Utilities will review to determine the customer’s appropriate rate classification. An initial rate review will be conducted in conjunction with the implementation of new rates approved by the Board of Commissioners for the City of Las Cruces Utilities. Subsequent rate reviews will be undertaken approximately twelve (12) months from the effective date of the new rates and every twelve (12) month period thereafter. A customer’s rate classification will not be changed as a result of a rate review in the absence of at least twelve (12) consecutive months of billing history.

Landscape water meter available per Landscape Meter schedule terms and conditions.

RATE

The bills are the sum of:

Access Charge
Per month $15.75

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons $1.26

Non-Summer Period (all other billing months)
Per 1,000 gallons $1.05

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service Rates.

BILLING UNITS

The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY

Available in the Las Cruces Utilities water service area for any establishment engaged in the operation of a business; an institution, whether or not for profit; or government entities.

Such enterprises shall include, but not be limited to, clubs, hotels, motels, schools, hospitals, multi-unit complexes, churches, municipal, county, state and federal buildings.

This rate applies to customers whose consumption equals to or exceeds 50,000 gallons within the billing cycle during at least ten (10) months of the twelve (12) months within the rate class review period. Customers whose usage is equal to or greater than 1,250,000 gallons within any month of the twelve (12) month review period shall receive service under the Industrial tariff unless the customer can demonstrate to the satisfaction of the Customer Service Manager with the consent of the Utilities Director that the measured usage was the result of a nonrecurring circumstance. The rate class review period is a period of twelve (12) consecutive billing months that Las Cruces Utilities will review to determine the customer’s appropriate rate classification. An initial rate review will be conducted in conjunction with the implementation of new rates approved by the Board of Commissioners for the City of Las Cruces Utilities. Subsequent rate reviews will be undertaken approximately twelve (12) months from the effective date of the new rates and every twelve (12) month period thereafter. A customer’s rate classification will not be changed as a result of a rate review in the absence of at least twelve (12) consecutive months of billing history.

Landscape water meter available per Landscape Meter schedule terms and conditions.

RATE

The bills are the sum of:

Access Charge
Per month .. $37.00

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons ... $2.05

Non-Summer Period (all other billing months)
Per 1,000 gallons ... $1.71

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service Rates.

BILLING UNITS

The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY

Available in the Las Cruces Utilities water service area for the exclusive use of multiple dwelling, master metered, residential units for domestic purposes such as apartment complexes, townhomes, and mobile home parks.

This rate applies to customers whose consumption equals to or exceeds 50,000 gallons within the billing cycle during at least ten (10) months of the twelve (12) months within the rate class review period. Customers whose usage is equal to or greater than 1,250,000 gallons within any month of the twelve (12) month review period shall receive service under the Industrial tariff unless the customer can demonstrate to the satisfaction of the Customer Service Manager with the consent of the Utilities Director that the measured usage was the result of a nonrecurring circumstance. The rate class review period is a period of twelve (12) consecutive billing months that Las Cruces Utilities will review to determine the customer’s appropriate rate classification. An initial rate review will be conducted in conjunction with the implementation of new rates approved by the Board of Commissioners for the City of Las Cruces Utilities. Subsequent rate reviews will be undertaken approximately twelve (12) months from the effective date of the new rates and every twelve (12) month period thereafter. A customer’s rate classification will not be changed as a result of a rate review in the absence of at least twelve (12) consecutive months of billing history.

Landscape water meter available per Landscape Meter schedule terms and conditions.

RATE

The bills are the sum of:

Access Charge
Per month .. $37.00

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons ... $2.05

Non-Summer Period (all other billing months)
Per 1,000 gallons ... $1.71

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service Rates.

BILLING UNITS

The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY

Available in the Las Cruces Utilities water service area for any establishment engaged in the operation of a business; an institution, whether or not for profit; or a governmental entity.

Such enterprises will include, but not limited to, industrial installations, schools, hotels, motels, municipal, county or federal buildings, etc.

This rate applies to such customers whose consumption within the billing cycle equals to or exceeds 1,250,000 gallons within any month of the twelve (12) month rate class review period. The rate class review period is a period of twelve (12) consecutive billing months that Las Cruces Utilities will review to determine the customer’s appropriate rate classification. An initial rate review will be conducted in conjunction with the implementation of new rates approved by the Board of Commissioners for the City of Las Cruces Utilities. Subsequent rate reviews will be undertaken approximately twelve (12) months from the effective date of the new rates and every twelve (12) month period thereafter. A customer’s rate classification will not be changed as a result of a rate review in the absence of at least twelve (12) consecutive months of billing history.

Landscape water meter available per Landscape Meter schedule terms and conditions.

RATE

The bills are the sum of:

Access Charge
Per month ... $1,000.00

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons ... $1.54

Non-Summer Period (all other billing months)
Per 1,000 gallons ... $1.28

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service Rates.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
WATER

PAZ WELL MUNICIPAL PARKS IRRIGATION – NON-POTABLE

AVAILABILITY

Available in the Las Cruces Utilities water service area for any municipally owned park where non-potable water wells are located and used for the purpose of landscape irrigation.

RATE

The bills are the sum of:

- **Access Charge**
 - Per month: $0.00

- **Volume Charge**
 - Summer Period (billing months of June, July, August, and September): Per 1,000 gallons $1.32
 - Non-Summer Period (all other billing months): Per 1,000 gallons $1.32

- **Tax and Fee**
 - Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY

Available in the Las Cruces Utilities water service area by permit for use in connection with the construction, alteration or repair of buildings or other similar activities requiring temporary service through hydrant meters.

To protect the water system from contamination, a backflow device (reduced pressure principle assembly) shall be required to be installed on the hydrant meter. The backflow device shall be provided by Las Cruces Utilities. Testing of the backflow device shall be procured by the customer from Las Cruces Utilities or a certified backflow device testing provider that is accepted and recognized by the City of Las Cruces Pollution Program.

Customer is responsible for any stolen or lost meter and/or backflow device and a separate charge will be imposed on customer for each stolen, lost, or relocated bulk water meter and/or backflow device.

RATE

The bills are the sum of:

Access Charge
Per month ... $23.50

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons... $3.74

Non-Summer Period (all other billing months)
Per 1,000 gallons.. $3.12

Bulk Hydrant Meter Service Activation or Relocation Charge
Per new service set-up or relocation of hydrant meter................................. $150.00

Backflow Device Fee... $50.00

Stolen or Lost Equipment Charge
Charge per meter and/or backflow device that is stolen or lost
Hydrant Meter ... $600.00
Backflow Device ... $150.00

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY

Available by contract in the Las Cruces Utilities water service area for parks for the purpose of irrigation. All other related uses will be billed as per the appropriate Commercial rates.

RATE

The bills are the sum of:

Access Charge
Per month .. $82.00

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons .. $1.93

Non-Summer Period (all other billing months)
Per 1,000 gallons .. $1.61

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
WATER
GOLF COURSE

AVAILABILITY

Available by contract in the Las Cruces Utilities water service area to any golf course customer.

RATE

The bills are the sum of:

- **Access Charge**
 Per month: $1,000.00

- **Volume Charge**
 Per 1,000 gallons: $1.54

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
WATER PARKS AND GOLF COURSE INTERRUPTIBLE TIME OF USE

AVAILABILITY

Available in the Las Cruces Utilities (LCU) water service area for golf courses and municipally owned parks for the purpose of irrigation. This will only apply to golf courses having ponding facilities to meet interruption of service events and parks that are willing to meet the operational needs of the utility.

A meter is installed to measure use during on-peak (6:00 a.m. to 6:00 p.m.) and off-peak (6:00 p.m. to 6:00 a.m.) hours. The Off-Peak rate applies to any water used during off-peak (6:00 p.m. to 6:00 a.m.) or any alternate period determined by the utility. All other use not off-peak will be billed at the On-Peak rate.

Service under this schedule shall be subject to interruption as determined by the Utilities Director or designee in response to system operational needs. The customer must cease water consumption upon notification to interrupt service. Customers shall receive notification from the Utilities Director or designee when an interruption of service event has been terminated and consumption of water can be resumed. A single interruption of service notification by LCU shall not exceed ten (10) continuous hours in duration. A customer’s failure to cease water consumption upon notification or during an interruption of service event shall be deemed a non-compliance event.

Customers who fail to comply with interruption of service notification will be billed at the On-Peak rate for service taken during the interruption period and will be subject to a penalty as set forth below. The Utilities Director has the option to cancel service under this schedule when a customer fails to comply with interruption of service notification.

A meter shall be installed to measure water use by time of day for service under this schedule. The customer shall install the time of use meter at customer’s own expense.

A condition of service under this schedule is signing a contract to include designation of a person responsible for ceasing water consumption.

RATE

The bills are the sum of:

Golf Course

<table>
<thead>
<tr>
<th>Access Charge</th>
<th>$850.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per month</td>
<td></td>
</tr>
</tbody>
</table>

Volume Charge

<table>
<thead>
<tr>
<th>On-Peak Rate Volume Charge</th>
<th>$3.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per 1,000 gallons</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Off-Peak Rate Volume Charge</th>
<th>$1.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per 1,000 gallons</td>
<td></td>
</tr>
</tbody>
</table>
WATER

PARKS AND GOLF COURSE INTERRUPTIBLE TIME OF USE

Parks

Access Charge
Per month ... $82.00

Volume Charge
On-Peak Rate Volume Charge
Per 1,000 gallons .. $3.09
Off-Peak Rate Volume Charge
Per 1,000 gallons .. $1.03

Non-Compliance Penalty
Penalty for each non-compliance event ... 35% of Total Bill for billing cycle

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
WATER
RECLAIMED WATER SERVICE

<table>
<thead>
<tr>
<th>SERVICES</th>
<th>CHARGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS CHARGE</td>
<td>$20.00</td>
</tr>
<tr>
<td>VOLUME CHARGE</td>
<td>50% of applicable potable water rate schedule</td>
</tr>
<tr>
<td>STOLEN OR LOST EQUIPMENT CHARGE</td>
<td>$600.00</td>
</tr>
</tbody>
</table>

AVAILABILITY
Available in the Las Cruces Utilities reclaimed water service area for the exclusive use of golf courses, parks, and medians and for construction water for irrigation, non-potable purposes, or other authorized use through regulations. The customer must execute a reclaimed water use agreement.

RATE
The bills are the sum of:

- **Access Charge**
 - Per month: $20.00

- **Volume Charge**
 - Per 1,000 gallons: 50% of applicable potable water rate schedule

- **Stolen or Lost Equipment Charge**
 - Charge per meter that is stolen or lost
 - Hydrant Meter: $600.00

- **Tax and Fee**
 - Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY

Available in the Las Cruces Utilities service area to all classes of service for landscape irrigation purposes except for golf courses and municipal parks. The applicable Access and Volume Charges will be billed pursuant to the service schedule determined by the rate class review process conducted annually to determine the appropriate rate classification.

Customers requesting landscape metering shall contact New Connections section to review requirements and all expenses associated with the installation.

RATE

The bills are the sum of:

Access Charge
Per month .. 50% of applicable Access Charge

Volume Charge
Per 1,000 gallons .. Applicable summer rates

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
WATER CONNECTION CHARGES

<table>
<thead>
<tr>
<th>Line Size</th>
<th>Service Line</th>
<th>Meter Charge</th>
<th>Service Line Additional Feet</th>
<th>Manifold</th>
<th>Pavement Cut</th>
<th>Pavement Cut (Over 25')</th>
<th>Main Line Extension</th>
<th>Size</th>
<th>Mainline Water Tap Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾"</td>
<td>$1,020</td>
<td>$187</td>
<td>$20</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>$1,020</td>
<td>$246</td>
<td>$20</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ½"</td>
<td>$1,160</td>
<td>$408</td>
<td>$20</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>$1,360</td>
<td>$627</td>
<td>$20</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td>$1,340</td>
<td>$1,644</td>
<td>$20</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4"</td>
<td>$1,340</td>
<td>$2,317</td>
<td>$25</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$50</td>
<td>4"</td>
<td>$1,245</td>
</tr>
<tr>
<td>6"</td>
<td>$1,590</td>
<td>$2,614</td>
<td>$25</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$50</td>
<td>6"</td>
<td>$1,245</td>
</tr>
<tr>
<td>8"</td>
<td>Based on Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special metering equipment required to serve a customer, including time of use meters, may cost more than the amounts set forth on this schedule. In such cases, the customer will be responsible for the actual cost of meter installation, including the meter itself, any other equipment or facilities, labor taxes, etc.

Meter Relocation Charge: Same charge(s) as a connection.

$150 Unable to Connect Service Charge

This charge shall be made when Las Cruces Utilities (LCU) is notified by the customer or customer’s representative that the service site is ready for service and connection and utility personnel have been scheduled to physically connect service, but are unable to connect the service due to, among other things, work site obstructions or incomplete service installation necessary for the utility to perform the necessary and appropriate connection.

TERMS AND CONDITIONS FOR NEW WATER SERVICE CONNECTION

When a permit for new construction is requested, this initiates the service connection process for water services. A Work Order for a new water connection shall not be scheduled until all pertinent impact fees as defined in the Development Impact Fee schedule and connection fees are paid. Fees are paid when a utility account is established with LCU Customer Service. The new connection for the residential construction site will be coordinated by LCU New Connection personnel and establish the final location of the water meter.

New residential construction sites that are found connected to the water system without establishing a utility account and bypassing payment of fees and charges for new connection, shall be deemed as theft of service and illegally connected to the water system.

Per Las Cruces Municipal Code 28-6, the City shall have the right to disconnect or refuse to connect or reconnect any utility service where there is evidence that theft of utility service (i.e. water connection) has occurred. LCU shall immediately disconnect water services and assess the customer or customer’s representative an assessment of $500.00 per instance of illegal connection. The illegal connection assessment shall be paid in full plus any and all unpaid fees and charges for new connection services and the establishment of a utility account.
APPLICABILITY

All water service with the exception of Bulk Water - Hydrant Metered and Reclaimed Water Service sales volumes provided by Las Cruces Utilities shall be subject to the terms of this rider schedule. Additionally, the periodic review and calculation of this rider charge will also exclude Bulk Water - Hydrant Metered and Reclaimed Water Service sales volumes.

LITIGATION COST RECOVERY RATE RIDER (LCRR)

Applicable Litigation Cost Recovery Rate Rider established by order of the Las Cruces Utilities Board. The LCRR shall enable Las Cruces Utilities to recover or refund litigation expenses exceeding or falling below the level approved in LCUB Case No. 2009-001 (W) and defined as the Baseline Litigation Costs (BLC). A recovery or refund shall be based on the positive or negative difference between the latest fiscal year litigation expenditures and the BLC. The recovery or refund factor shall be calculated based on the total water consumption for the reconciled fiscal year and shall be reflected on customer bills as a charge in dollars and/or cents per 1,000 gallons billed.

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
Las Cruces Utilities

Water Development Impact Fee Rate Rider

Applicability

All water service with the exception of Bulk Water - Hydrant Metered and Reclaimed Water Service sales volumes provided by Las Cruces Utilities shall be subject to the terms of this rider schedule. Additionally, the periodic review and calculation of this rider charge will also exclude Bulk Water - Hydrant Metered and Reclaimed Water Service sales volumes.

Development Impact Fee Rate Rider (DIFRR)

Applicable Development Impact Fee Rate Rider established by order of the Utilities Board. The DIFRR shall enable Las Cruces Utilities to recover or refund Development Impact Fee expenses for which ratepayers are responsible exceeding or falling below the level approved in LCUB Case No. 2009-001 (W) defined as the Baseline Development Impact Fee Expense (BDIFE). A recovery or refund shall be based on a positive or negative difference between actual fiscal year development fund expenses for which ratepayers are responsible and the BDIFE. The recovery or refund factor shall be calculated based on the total water consumption for the reconciled fiscal year and shall be reflected on customer bills as a charge in dollars and/or cents per 1,000 gallons billed.

Tax and Fee

Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.

Billing Units

The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
APPLICABILITY

For the purpose of leasing water rights owned by the City of Las Cruces and pursuant to NMSA 1978, § 72-6-3 (2003) allows the owner of a water right to lease all or any portion “of the water use due him under his water right, and the owner’s water right shall not be affected by the lease of the use.”

A Lessee contracting with the City of Las Cruces to temporarily lease water rights shall file an application with the Office of the State Engineer (OSE) to temporarily expand the place of use, purpose of use, and point of diversion of some of the City’s groundwater right, subject to authorization from the Office of the State Engineer and in compliance with NMSA 1978, § 72-6-3 et al. (2003).

The Lessee shall pay the City for the lease of water rights pursuant to the Temporary Lease of Groundwater Rights tariff based on water usage recorded by a water meter approved by the OSE. The Lessee will supply the City with the initial meter reading associated with the initial pumping of the leased water use. The lessee will also supply the City with a copy of the monthly well pumpage report submitted to the OSE, which the City will use for billing purposes. The City shall prepare an invoice based on said report and will submit it to lessee pursuant to normal business practices for billing. All payments due hereunder may be made by check, cashier’s check, wire or electronic funds transfer. Payments will be made to the City within fifteen (15) days of receipt of the invoices. The City reserves the right to inspect the meter installation and operation in coordination with the lessee.

The Lessee shall pay all costs associated with the Application before the OSE (“the Application”) for the temporary transfer of the City’s water rights to accomplish this lease transaction. The Lessee shall be represented by its own attorney in all matters concerning the Application. The Lessee will pay all costs incurred in filing the Application and in defending any protest to the Lessee’s Application, or in otherwise prosecuting the Application. The Lessee shall pay all administrative and legal costs incurred by the City as a result of the filing of the Application.

A condition of service under this tariff requires an executed Temporary Lease of Groundwater Rights Agreement between the Lessee and the City of Las Cruces which shall define all the terms and conditions of the lease. Service under the tariff schedule requires Resolution approval by the Board of Commissioner for the City of Las Cruces Utilities.

RATE

The bills are the sum of:

Processing Charge
Per month.. 100% of applicable Bulk Water Tariff Access Charge

Volume Charge
Per 1,000 gallons.. 40% of applicable Water Bulk Water Tariff Summer Period Volume Charge

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.
WATER

TEMPORARY LEASE OF GROUNDWATER RIGHTS

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
APPLICABILITY

All water services provided by Las Cruces Utilities shall be subject to terms of this fee schedule, the sole exception are bulk water meter sales.

RATE

The bills are the sum of:

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons $0.11

Non-Summer Period (all other billing months)
Per 1,000 gallons $0.11

Tax and Fee
Applicable Taxes assessed by a Governmental Authority and not included in Cost of Service rates. Not subject to Franchise Fee.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
WATER
OUTSIDE CITY LIMITS SERVICE SURCHARGE

APPLICABILITY

Applicable to all customers with a backup meter who are outside the Las Cruces Utilities service area.

RATE

The bills are the sum of:

Outside City Charge
Surcharge on total bill, excluding gross receipts tax ... 35.8%

Tax and Fee
Applicable Taxes & Franchise Fee assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
TABLE OF CONTENTS

1. INTRODUCTION
 1.1. BACKGROUND
 1.2. OVERVIEW OF EXISTING CITY WATER SYSTEM
 1.3. OVERVIEW OF CURRENT WATER USE
 1.4. PROJECTED WATER DEMAND AND REVENUE REQUIREMENTS

2. CONSERVATION PROGRAM
 2.1. BRIEF OVERVIEW 2005 – 2010 WATER CONSERVATION PROGRAM
 2.2. CONSERVATION PROGRESS AND ACHIEVEMENTS
 2.3. CURRENT WATER CONSERVATION ORDINANCE
 2.4. EVALUATION AND MEASURES
 2.5. GPCD TRENDS AND PROJECTIONS
 2.6. ACTIONS PLANNED AS PART OF THE EXISTING PROGRAM

3. GOALS OF THE CONSERVATION PLAN
 3.1. PROCESS FOR OBTAINING PUBLIC INPUT TO THE PLAN
 3.2. REASON FOR CONSERVING WATER
 3.3. SPECIFIC CONSERVATION OBJECTIVES

4. CONSERVATION MEASURES TO BE ENACTED 2012
 4.1. PROGRAM ACTIONS
 4.2. VOLUNTARY MEASURES
 4.3. MANDATORY MEASURES (DEMAND SIDE)
 4.4. SUPPLY SIDE WATER CONSERVATION

5. PROGRAM EVALUATION
5.1 ANALYSIS METHODS AND EVALUATION CRITERIA

6. IMPLEMENTATION PLAN

6.1 IMPLEMENTATION OF MEASURES

6.2 IMPLEMENTATION OF SINGLE FAMILY AND MULTI-FAMILY RESIDENTIAL MEASURES

6.3 IMPLEMENTATION OF INDUSTRY, COMMERCIAL, AND INSTITUTIONAL MEASURES

6.4 ENFORCEMENT

7. METHODOLOGY FOR THE WATER CONSERVATION PROGRAM

8. WORK CITED

GLOSSARY
TABLE OF FIGURES

Figure 1-1: City of Las Cruces Service Area
Figure 1-2: Historical Water Diversions for 1995 to 2005
EXECUTIVE SUMMARY

The Las Cruces Utilities (LCU), a department within the City of Las Cruces, has been implementing water conservation activities for over eleven years to help ensure that future water demands, quality of life, and economic development can be supported.

The LCU conservation program is shaped by the LCU 40 Year Water Development Plan (Water Plan). The Water Plan outlines current supply and demand and the City’s future water needs for the next 40 years, which includes developing a sustainable local supply of water with continued conservation.

The LCU conservation program currently provides education, and assistance to reduce water use in Las Cruces. Education includes our Lush and Lean program, which provides free landscape classes and a demonstration park. Education includes assistance with school programs and a water festival. The conservation program also includes comprehensive indoor/outdoor conservation audits, which include retrofits for aerators and low-flow showerheads.

LCU currently has 45,111 acre-feet of groundwater rights. For 2010, the Las Cruces service area used 20,250 acre-feet of water. Water usage for the area served by LCU has varied over time. While population and migration into the area has increase, on average 31 percent, in the past 10 years LCU has been able to decrease GPCD at a steady average rate of 3 percent per year. For 2010, per capita per day usage (GPCD) was 192 gallons. The City is required by water right Permit No. LRG-3275 et.al. to meet a GPCD of 180 gallons by the year 2030. Most water usage for the City service area is
the single family residential sector with an overall system usage of 58 percent, with approximately 50 percent of that usage being applied for outdoor water usage.

While some effort has been made to improve conservation efforts, many cost-effective efficiency measures remain to be considered. Moving forward, LCU plans to expand measures focused on program actions which include reducing usage by 5 percent for City owned facilities; undertaking supply side conservation, which include the implementation of automatic reading meters, and implementing evaluation tools such as the Alliance for Water Efficiency (AWE) tracking tool. LCU anticipates that the program actions, audit program, education, and enforcement the goal of 180 GPCD will be met by 2030.

The water conservation program additionally sees the level of funding, resources, and public participation changing over time. As such this Conservation Plan is intended to serve as a broad guidance document that will inform development of annual action plans; identifying staff, resources, and budget needs. Recommendations contained therein will be revisited and adapted as needed to meet LCU’s needs and to ensure that its conservation goals are met.
1. Introduction

Water Conservation promotes water-use efficiency through improvements in monitoring system-wide water use, education and awareness, changes and restructuring of water rates and prices, and improvements in plumbing fixtures, water technology, and household water management, including landscape irrigation.

This document represents the City of Las Cruces Water Conservation Plan (Plan), which will serve as a blueprint for a successful water conservation program for water and wastewater systems in the City. This Plan will:

- Identify the City’s conservation goals;
- Develop a water-use profile and forecast;
- Identify and evaluate potential conservation measures;
- Identify and assess potential conservation incentives;
- Select conservation measures and incentives that will become part of the conservation plan and;
- Identify enforcement mechanisms.

The Plan will also contain recommendations to monitor and evaluate plan components, and to revise the program in the future as needed. The Utilities 40 Year Water Development Plan (City’s 40 Year Plan), Las Cruces Strategic Plan 2010-2014, Lower Rio Grande Regional Water Plan and the completed Phase I of the water conservation program serve as inputs to the Plan.
1.1 Background

Las Cruces is the second largest city in New Mexico with a 31 percent increase in population from 2000 to 2010 (BBER, 2011). In order to maintain quality of life, and economic growth, a sustainable water supply will be needed. To achieve this goal, the City will need to prepare a Plan to encourage necessary changes in behavior and use. The need for water conservation is clear. New Mexico is in the midst of a probable long-term drought and water may be over allocated in the Lower Rio Grande Basin (LRGB).

Currently the City of Las Cruces uses groundwater for drinking and bulk water usage. Surface water in the LRGB from Elephant Butte Irrigation District (EBID) is used for agriculture and outdoor use. There are numerous homeowners within Las Cruces city limits that are within the EBID system and are small tract users who use surface water for irrigation of lawns, which are 2 acres or less. The City has taken aggressive measures to secure additional water rights for surface water with the intent of developing a surface water treatment plant for potable water use purposes in the City.

The City has a successful water conservation program which has reduced per capita water demand since 2000 by approximately 21 percent. While service area population has grown from 75,000 to about 98,500 in ten years, diversion has been stable at 6.5 billion gallons per year (BGY). Table 1-1 is a simple calculation of diversions divided by service area population. This table shows that per capita demand decreased from 255.3 gallons in 2000 to 191.7 gallons in 2010.
Table 1-1: Per capita water usage from 2000 to 2010.

<table>
<thead>
<tr>
<th>Year</th>
<th>Diversion (AFY)</th>
<th>Population</th>
<th>GPCD</th>
<th>Wastewater Discharge (ac-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>20,683.4</td>
<td>72,333</td>
<td>255.3</td>
<td>8,463</td>
</tr>
<tr>
<td>2001</td>
<td>20,386.6</td>
<td>73,976</td>
<td>246.0</td>
<td>7,696</td>
</tr>
<tr>
<td>2002</td>
<td>19,905.3</td>
<td>75,884</td>
<td>234.2</td>
<td>7,763</td>
</tr>
<tr>
<td>2003</td>
<td>19,735.2</td>
<td>78,283</td>
<td>225.2</td>
<td>8,141</td>
</tr>
<tr>
<td>2004</td>
<td>19,063.2</td>
<td>80,967</td>
<td>210.2</td>
<td>7,597</td>
</tr>
<tr>
<td>2005</td>
<td>19,036.0</td>
<td>84,066</td>
<td>202.2</td>
<td>7,622</td>
</tr>
<tr>
<td>2006</td>
<td>19,270.1</td>
<td>85,435</td>
<td>201.4</td>
<td>7,726</td>
</tr>
<tr>
<td>2007</td>
<td>20,296.6</td>
<td>89,269</td>
<td>203.0</td>
<td>7,984</td>
</tr>
<tr>
<td>2008</td>
<td>18,507.9</td>
<td>91,551</td>
<td>180.5</td>
<td>8,343</td>
</tr>
<tr>
<td>2009</td>
<td>19,964.3</td>
<td>93,585</td>
<td>199.8</td>
<td>9,776</td>
</tr>
<tr>
<td>2010</td>
<td>20,235.2</td>
<td>95,338</td>
<td>191.7</td>
<td>9,488</td>
</tr>
</tbody>
</table>

Las Cruces is required by Condition of Approval No. 5 in Permit No. 3275 et.al. to achieve per capita usage of 180 by 2030. Table 1-2 below describes the mandatory water right permit requirements set forth by the New Mexico Office of the State Engineer (OSE). Most of the LCU water right permits do have water conservation mandates which include requirements for written reports to OSE concerning water conservation efforts, overall per capita use and residential per capita use calculations. All permits require that water be used to the highest and best technology available and economically feasible. However, on March 9, 2010, the OSE approved LRG-3275-POD-1 thru POD-7\(^1\) that requires the City to formalize and expand the water conservation program. The water conservation requirements for each permit are listed below.

\(^1\) POD is an acronym for Point Of Diversion
<table>
<thead>
<tr>
<th>Permit number</th>
<th>Mandatory requirements set by OSE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRG – 3275-POD-1 thru POD-7</td>
<td>Within 2 years of the approved permit, the City shall submit a WCP acceptable to OSE outlining a plan to achieve a GPCD goal of 180 within 20 years. The WCP will additionally maintain that level of effort to achieve a more aggressive GPCD goal within 40 years. The WCP will be updated every 10 years and include provisions for reducing water usage during periods of extended drought consistent with appropriate drought management plans.</td>
</tr>
<tr>
<td>LRG – 3275-POD-1 thru POD-7</td>
<td>The City shall submit, on or before March 1 of each year, a written report acceptable to the Water Use and Conservation Bureau, OSE on their water conservation efforts, overall GPCD using the NMOSE GPCD methodology, and annual AWWA system audit.</td>
</tr>
<tr>
<td>LRG – 5818-S-7LRG – 5818-S-8</td>
<td>The City shall submit, on or before January 1 of each year, a written report acceptable to the State Engineer on its water conservation efforts, overall per capita use and residential per capita use calculations, and any changes to its original water conservation plan.</td>
</tr>
<tr>
<td>LRG – 3283</td>
<td>The City shall submit on January 1 of each year a written report on water conservation efforts overall per capita use and residential per capita use calculations and any changes to the water conservation plan all of which illustrate the effectiveness of the water conservation efforts of the City. Within 3 years of approval of these permits the City shall reduce residential per capita use to amount equal to southwestern states average.</td>
</tr>
<tr>
<td>LRG – 3295</td>
<td>The City shall submit on January 1 of each year a written report on water conservation efforts overall per capita use and residential per capita use calculations and any changes to the water conservation plan.</td>
</tr>
</tbody>
</table>
The OSE mandates are relatively consistent with the goals of the City's 40 Year Plan, which set a goal of reducing the overall total gallons per capita per day (GPCD) water use to 180 GPCD by 2045 in order to maintain the ability to serve all rate classes in Las Cruces over the next 40 years. The City's 40 Year Plan includes an extensive conservation component that the City will conserve water in its facilities, develop programs and pilot projects to model conservation, work closely with all residents, businesses, and water suppliers within the City to promote conservation and effectively manage resources. These programs can effectively increase water supply and/or water rights and could defer utility costs. Benefits to residents and businesses include
decreased energy, water, and wastewater bills and decreased landscaping maintenance costs.

1.2 Overview of existing City water system

The City of Las Cruces provides water services through its Utilities Department. Water service is provided both within the City limits and in extraterritorial areas (Figure 1-1). Currently the active key features of the existing Las Cruces water system include approximately:

- 10 pressure zones,
- 30 pressure regulating valves,
- 30 supply wells over the past ten years,
- 10 booster pump stations,
- 1 elevated and 12 ground storage reservoirs, and
- Over 500 miles of transmission and distribution system.

Three well fields (East Mesa, Valley, and West Mesa) currently provide water throughout the City's water service area. Additionally, the system includes the City's wastewater treatment plant (Jacob Hands Wastewater Treatment Plant). In 2010 a total of 47 percent of the City's water diversion was discharged as treated wastewater effluent to the Rio Grande. The City's reclamation plant, where wastewater effluent from the area is processed to tertiary levels of treatment, will distribute this treated effluent through a network of purple pipes to local area parks, golf course, future public school fields and other reclaimed potential uses as approved by the New Mexico Environmental Department.
Figure 1-1 City of Las Cruces Service Area
Furthermore, the City will continue to develop and maintain a sustainable water supply over the next 40 years by using ground water in the Mesilla Basin in conjunction with surface water from the Rio Grande\(^2\), along with proactive conservation. The City will need to construct a surface water treatment plant to be able to use the surface water option. Las Cruces plans to only pump groundwater from storage in the Jornada del Muerto Basin in dry years when surface water is limited, or to accommodate increases in demand on a temporary basis and to preserve the water supply in the Jornada del Muerto Basin. Additionally, the City’s long-range water plan calls for drilling of additional wells and implementation of projects for wastewater reuse.

Over the past fifteen years the City has purchased surface water rights from local EBID constituents. While most of these water rights have been adjudicated, the duty of water has never been established through the courts. In the Final Judgment issued August, 2011 by the State of New Mexico, Third Judicial District Court No. CV-96-888; Stream System 97-101 ruled that “[f]or future transfers to non-irrigation purposes of use, a consumptive irrigation requirement (CIR) of 2.6 acre feet per annum (afay) shall apply to all irrigated acreage in the Lower Rio Grande”. This judgment adjudicates the amount of CIR and farm delivery requirements (FDR) for irrigations with surface water only (shall not exceed 3.024 afay FDR), combined surface and groundwater rights (shall not exceed 4.5 afay FDR), and groundwater only (shall not exceed 4.5 afay FDR). While

\(^2\) City plans to obtain surface-water rights, through the leasing and purchasing of agricultural water for municipal use. The City will develop and maintain a sustainable water supply by using surface water from the Rio Grande in conjunction with the City’s existing Rio Grande connected groundwater rights in the Mesilla Basin.
most of the judgment focuses on agricultural irrigation, the only generally applicable provision for municipal use is listed above. Although the settlement has been issued a Final Judgment, the City of Las Cruces has requested an addendum to the Final Decree regarding post-decree administration. The City’s 40 Year Plan provides additional detailed information concerning the City’s current and future water supply.

In December 2006 the City Council created the Las Cruces Utility Board (the Board) through Ordinance 2342. The Board consists of seven (7) Commissioners, two (2) of whom are seated City Councillors. The Board determines the strategic policies and many practices (including setting rates) for the water system. The Plan is a component of the 40 year requirement of OSE permit. The water conservation program is part of the strategic policy duties of the Board; therefore the Board will have authority to adopt the Plan once approved by OSE.

1.3 Overview of current water use

During the past ten years the quantity of water used in the service area has fluctuated over time but has generally remained steady, while population has increased by 31 percent (See Table 1-1). In 2010, 84 percent of diversions were accounted for by sales to customers and 16 percent by non-revenue deliveries. The non-revenue deliveries are unmetered and unbilled water and consist of fire protection and training, fire hydrant testing, potable and collection line flushing, billing irregularities and general losses to the system.

The City of Las Cruces customer classes include residential, large multi-unit, small commercial, large commercial, industrial service, bulk water, parks, golf courses,
and reclaimed water. Table 1-3 shows the number of connections to the water system as of May, 2011.

<table>
<thead>
<tr>
<th>Customer Class</th>
<th>Number of connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential*</td>
<td>27,075</td>
</tr>
<tr>
<td>Large multi unit**</td>
<td>866</td>
</tr>
<tr>
<td>Small Commercial</td>
<td>2,626</td>
</tr>
<tr>
<td>Large Commercial</td>
<td>450</td>
</tr>
<tr>
<td>Industrial</td>
<td>18</td>
</tr>
<tr>
<td>Parks</td>
<td>74</td>
</tr>
<tr>
<td>Reclaimed Golf course</td>
<td>1</td>
</tr>
<tr>
<td>Bulk</td>
<td>77</td>
</tr>
</tbody>
</table>

*Residential includes all residents who receive water from the City whether they are outside city limits.
**Multi family residents (MFR) were removed from the rates during the 2009 water rate case and moved into the small or large commercial rates. However, MFR are being flagged within the small and large commercial for auditing and reporting purposes.

The City’s 2010 OSE GPCD Calculator, attached in Appendix A, indicates that the current per capita use is 191.7 gallons. This rate represents the overall water use for all customer classes and non-revenue uses listed in Table 1-3. Since 2000, Las Cruces diversions have been relatively constant, while population has steadily increased three percent annually. Las Cruces is also using the American Water Works Association (AWWA) audit to evaluate the City water system performance. A complete AWWA Audit for 2010 is provided in Appendix B of this Plan.

1.4 Projected water demand and revenue requirements
Table 1-4. City of Las Cruces water demand projections (projected population * projected total GPCD water use). Source: City of Las Cruces 40 Year Water Development Plan, 2008.

<table>
<thead>
<tr>
<th>Year</th>
<th>Utility-adjusted maximum growth, ac-ft/yr</th>
<th>High growth, ac-ft/yr</th>
<th>Medium growth, ac-ft/yr</th>
<th>Low growth, ac-ft/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>22,994</td>
<td>22,994</td>
<td>22,043</td>
<td>21,348</td>
</tr>
<tr>
<td>2015</td>
<td>26,003</td>
<td>25,478</td>
<td>22,269</td>
<td>20,506</td>
</tr>
<tr>
<td>2020</td>
<td>30,263</td>
<td>28,477</td>
<td>23,999</td>
<td>20,269</td>
</tr>
<tr>
<td>2025</td>
<td>35,206</td>
<td>32,458</td>
<td>26,241</td>
<td>20,025</td>
</tr>
<tr>
<td>2030</td>
<td>41,157</td>
<td>36,441</td>
<td>28,521</td>
<td>20,600</td>
</tr>
<tr>
<td>2035</td>
<td>48,101</td>
<td>41,729</td>
<td>31,479</td>
<td>21,230</td>
</tr>
<tr>
<td>2040</td>
<td>56,203</td>
<td>46,826</td>
<td>34,327</td>
<td>21,828</td>
</tr>
<tr>
<td>2045</td>
<td>66,018</td>
<td>53,891</td>
<td>38,079</td>
<td>22,609</td>
</tr>
</tbody>
</table>

In 2008, Las Cruces filed its 40 Year Plan with the OSE. The 40 Year Plan projected water demand for three population growth scenarios. These projections are summarized in Table 1-4 above. Total diversion for 2010 by the City of Las Cruces was 20,235 AFY, which is well below the low growth rate on water demand. Water use in the past 10 years has become more efficient, primarily because of a moderate average annual precipitation and a pro-active water conservation program.

Historical diversions from 1995 to 2005 and projected demand from 2006 to 2045 are shown in Figure 1-2 below. The 40 Year Plan included a figure that projected demand from 2006-2045, which is included as Figure 1-2. The y-axis in Figure 1-2 shows the level of water rights by volume and the x-axis shows the project demand in years. The top blue solid line shows the sum of water right permits that the City currently possesses. The City has 45,111 acre-feet of groundwater rights. The dashed lines show projected water demand to the year 2045 in the face of demand rates of low,
medium, high, and maximum growth. For example, if the City encounters a maximum population growth rate, the Utility will have only enough groundwater to the year 2033. The City will continue to purchase groundwater rights and perfect the rights they already have based on the maximum growth rate.

Using data from the 40 Year Water Plan, Table 1-5 illustrates the forecasted medium growth population served by LCU, the predicted demand (ac.ft.) and the forecasted GPCD through year 2030. This is consistent with the permit condition associated with Permit No. LRG 3275 et.al. PODS 1 thru POD 7 that mandates a GPCD goal of 180 within 20 years or 2030.
Table 1-5: Predicted Demand and GPCD using medium population growth for years 2010 – 2028.

<table>
<thead>
<tr>
<th>Year</th>
<th>Population served</th>
<th>Predicted demand (ac.ft.)</th>
<th>GPCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>94,092</td>
<td>20,249.87</td>
<td>192</td>
</tr>
<tr>
<td>2015</td>
<td>99,835</td>
<td>21,485.86</td>
<td>192</td>
</tr>
<tr>
<td>2020</td>
<td>109,796</td>
<td>22,891.18</td>
<td>186</td>
</tr>
<tr>
<td>2025</td>
<td>122,569</td>
<td>24,867.26</td>
<td>181</td>
</tr>
<tr>
<td>2028</td>
<td>130,233</td>
<td>26,276.27</td>
<td>180</td>
</tr>
</tbody>
</table>

As stated earlier, in order to continue a sustainable water management program, for the next 40 years, the City plans to use groundwater in the Mesilla Basin in conjunction with surface water from the Rio Grande, along with a proactive conservation program. The City will also

- continue to actively pursue water rights that are pending and unperfected,
- lease and purchase agricultural surface water for municipal use,
- pursue the option of using reclaimed water for aquifer storage and recovery\(^3\) and,
- pursue the potential of utilizing brackish water from deep wells.

Aggregate revenue requirements for LCU in general are based on the Utilities cost to operate, rehabilitate, acquire water resources and expand and build facilities to provide safe and reliable water service to its customers. Decreases in GPCD may

\(^3\) New Mexico has not fully utilized water reuse technology in the past; however, the state recently began allowing aquifer storage and recovery. NMSA 1978 § 72-5 A-1 et. seq. covers the administration and use of water for the purpose of underground storage and recovery (USR). The 1999 Act passed by the New Mexico Legislature allows governmental entities to store surplus supplies of water underground and to withdraw the recoverable amount at a later date for use by the governmental entity. The Legislature concluded that through this act, groundwater recharge, storage, and recovery have the potential to: 1) offer savings in the cost of capital investment, operation and maintenance, and flood control, improve water and environmental quality; 2) reduce the rate at which groundwater levels will decline and stress the aquifer; 3) promote conservation of water; 4) serve the public welfare of the state; and 5) lead to a more effective use of the state’s water resources. However, the effort, efficiency, and process to actually acquire the permit for underground storage and recovery can take large amounts of funds and time (19.25.8.1 NMAC). While ASR is technically allowed there is currently no ASR in New Mexico. The closest direct reuse of recycled water that is being conducted is occurring in Cloudcroft, New Mexico. Due to many different governing agencies within the State of New Mexico such as the OSE, New Mexico Environmental Department and New Mexico Construction Industries Division (CID) it is very difficult to acquire permits and permission for ASR or any other indirect reuse of wastewater within the state.
reduce LCU revenue, but the reduction in revenue will be addressed through the regular rate review process. LCU has designed its tariff policy strategically to meet cost of service revenue based on a one year test period and to be consistent with the needs and goals of the community. Utility rates under a utility cost of service methodology, by default, do not embody any long-range forecasting of demand.

Since the cost of providing water has increased appreciably, the result has been substantial upward pressure on water rates. In Las Cruces, water rates must be approved by a voting majority from the Utilities Board. The City’s rate case uses cost of service and revenue requirement information from an audited test year. Interveners are welcome and encouraged to join the rate case. One pre-established intervener is the Rate Advisory Committee (RAC). The RAC consist of seven members from the public that are appointed to the committee through the City Council. The responsibility of the RAC is to represent the residential and small business rate classes only. The rate case typically should be completed by nine to twelve months. The last water and wastewater rate case for City of Las Cruces was in 2009-2010 with new rates going into effect October, 2010. These rates attached in Appendix C do not include conservation, but during the rate hearing the RAC did recommend to the Utilities Board that the water rates be re-evaluated for conservation with a need for inclining block rates after two years, which would be October, 2012.

2. Conservation Program
In 1999 the City Council adopted a long range water conservation program that has evolved into our current water conservation program. Las Cruces’ water conservation program basically consists of peak watering restrictions, water wasting restrictions, and fines. The program was enhanced in April, 2005 with the adoption of the 2005-2010 Phase I Water Conservation Program (Appendix D) to secure the long-range sustainability of the City’s water supply and meet water permit requirements mandated by OSE (Table 1-2). The current Water Conservation Ordinance, shown in Section 2.2 restricts irrigation usage to specific time periods. The Landscape Ordinance allows landscape irrigation three days per week (using an odd-even address schedule, with no watering on Mondays), between the months of April 1 through September 30 with watering limited between the hours of 6:00 pm through 10:00 am. Any persons convicted of a violation of the Water Conservation Ordinance are considered guilty of a petty misdemeanor and shall be punished in accordance with fines listed in Table 2-1. Amendments in 2005 removed blanket waivers of the Ordinance for entities such as School Districts, although there still are variance options based on need.

<table>
<thead>
<tr>
<th>Type of property</th>
<th>1<sup>st</sup> conviction</th>
<th>2<sup>nd</sup> conviction</th>
<th>3<sup>rd</sup> and subsequent convictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential property</td>
<td>$50.00</td>
<td>$100.00</td>
<td>$250.00</td>
</tr>
<tr>
<td>Nonresidential property</td>
<td>$100.00</td>
<td>$250.00</td>
<td>$500.00</td>
</tr>
</tbody>
</table>

The 40 Year Plan presents a “Water Conservation Plan” in section 4, along with an assessment of conservation-based demands in section 3. Below is a summary of tactics for meeting total GPCD water use goals listed in sections 3 and 4.
• Continue Phase I Water Conservation Plan
• National Plumbing Efficiency Standards – specifying low-flow plumbing fixtures in all new homes
• Revise landscape design standards
• Increase enforcement of the water conservation ordinance
• Develop summer month surcharge for users exceeding some multiplier
• Conduct indoor and outdoor water audits for residential accounts
• Pursue grant funds to increase outreach, rebates, conservation devices
• Increase the use of reclaimed water for irrigation
• Reduce water losses within the system

2.1 Conservation Progress and Achievements

Currently, enforcement of the Water Conservation Ordinance is operated through the City’s Codes Enforcement Unit, which is directly under the City’s Police Department. This unit is responsible for the enforcement of most municipal codes. Their job covers nuisances, ADA violations, zoning violations, inoperative vehicles, street and sidewalk obstruction, littering and graffiti, and weed control just to name a few. Records from Las Cruces Municipal Court shows that between, 2007 to 2009 there were a total of 15 citations issued and in 2010 a total of 213 water waste violations were reported to the City’s Codes Enforcement with a total of two citations issued. The City’s Codes Enforcement which is compliance driven has adopted a policy to use education awareness for code violators. Codes officers approach water wasting violators using education and reference to the Water Conservation Ordinance instead of issuing citations.

2.2 Current Water Conservation Ordinance

The current Water Conservation Ordinance requires and encourages all users of city provided water and to all users of water provided by water utility companies
franchised by the city to reduce water consumption and waste. The Ordinance applies to all users of the City who receive water from LCU. Not all water use restrictions are to all users within the city limits (subsection 28-304(b)(1).

Outdoor water restrictions for vegetation are not applied to users who use irrigation water provided by EBID, or to users of water provided by mutual domestic water companies or from domestic wells.

The outdoor water restrictions will follow a schedule for vegetation on residential and commercial properties includes the following:

1.) All outdoor vegetation on residential and commercial properties located on the even numbered side of the street shall be watered only on Tuesdays, Thursdays, and Saturdays, and on the odd numbered side of the street shall be watered only on Wednesdays, Fridays, and Sundays. For corner buildings or properties having both odd and even numbers, the number shown on the City’s or the franchised water companies utility records shall control.

2.) Outdoor vegetation shall not be watered on Mondays without a written variance.

3.) From April 1 to September 1, all outdoor watering of vegetation is prohibited between the hours of 10:00 a.m. and 6:00 p.m.

The Ordinance additionally outlines miscellaneous water waste restrictions. These restrictions include the washing of vehicles and other types of mobile equipment. Washing will be done only with a handheld bucket or a handheld hose equipped with a functioning shutoff nozzle for quick rinses. The restriction does not apply to the washing
of vehicles or mobile equipment at a commercial carwash or commercial service station.

Additionally the following uses of water are defined as wasting water and are prohibited:

1.) Allowing water to flow onto adjacent property or onto any street, alley or other public right-of-way.

2.) Watering outdoor vegetation excessively so that water ponds on site.

3.) Failing to repair a water leak within five working days of the discovery of the leak.

4.) Washing sidewalks, driveways, parking areas, tennis courts, patios and other impervious surfaces with a hose, except in emergencies to remove spills of hazardous materials or to eliminate dangerous conditions which threaten the public health, safety or welfare. When used in this subsection, the term “impervious surface” means any surface covered with nonporous material. (Code 1988, §29-364)

Enforcement for the ordinance states that any person who is convicted of a violation of water wasting restrictions shall be guilty of a petty misdemeanor and shall be punished. For violations that are continuous in time, each day the violation continues is a separate offense and violations that are continuous in time may be abated by injunctive or other equitable relief. The imposition of a criminal penalty does not prevent equitable relief. (Code 1988, §29-365)

The current ordinance includes several exceptions concerning outdoor watering restrictions on vegetation and miscellaneous water use restrictions. These exceptions include:

1.) Water flow as a result of natural events such as rain or snow, unless the user is watering at the same time.
2.) Water flow that is a result of temporary malfunctions of or vandalism to the municipal water supply system.

3.) Water flow that is a result of water used for firefighting purposes, including the inspection and pressure testing of fire hydrants, or the use of water for firefighting training activities.

4.) The use of water required for the control of dust or the compaction of soil as may be required by municipal codes.

5.) The water used to wash down areas where flammable or otherwise hazardous material has spilled, creating a dangerous condition.

6.) The water used to prevent or abate public health, safety or accident hazards when alternate methods are not available.

7.) The water used for routine inspection or maintenance of the municipal water supply system.

8.) The water used to facilitate construction within public right-of-way in accordance with city requirements and good construction practices.

9.) The use of water that is permitted under a variance granted by the city.

10.) The water used for street sweeping, sewer maintenance or other established utility practices.

11.) Watering contrary to the odd/even or time of day requirements is permitted for one day only where application of chemicals requires immediate watering to preserve an existing lawn.
12.) Watering contrary to the odd/even or time of day requirement is permitted for up to two weeks for newly planted landscaping vegetation. (Code 1988, §29-366) Water Conservation Plan.

2.3 Evaluation and Measures

Table 2-2 below summarizes Phase I of the water conservation program, the performance of the program and possible future changes to improve the existing program.

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Evaluation</th>
<th>Improvements</th>
</tr>
</thead>
</table>
| Peak water demand and miscellaneous water restrictions (Ordinance) | Odd/even watering and time restrictions | W | • For new development:
• Watering variance for those that adopt water smart or rain sensor controllers.
• Implement master valve in irrigation designs that will help reduce water loss in cases of leaky valves.
• Prohibit use of overhead spray irrigation for watering of trees and shrubs.
• Work with Codes Enforcement. |
| Water conserving landscape | Lush & Lean workshops | W/NA | • Conduct irrigation audits and workshops |
| Education and public awareness | Public schools and public | W/NA | • Continue classroom education with intent of hiring a part-time person (retired school teachers) to assist in education.
• Community water festival
• Conduct monthly L&L workshops, workshops include landscape irrigation, indoor water waste, rainwater harvesting, leak detection, and greywater |
<table>
<thead>
<tr>
<th>Applications</th>
<th>Civic speaking engagements</th>
<th>Adopt inclining block rate or a water conservation rider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rates</td>
<td>New water rates in place October, 2009</td>
<td>NA</td>
</tr>
<tr>
<td>Enforcement</td>
<td>Codes through Police department enforces waste water restrictions</td>
<td>NA</td>
</tr>
<tr>
<td>City to lead by example</td>
<td>Indoor and Outdoor conservation</td>
<td>NA</td>
</tr>
<tr>
<td>GIS</td>
<td>Locates specific high users</td>
<td>NW</td>
</tr>
</tbody>
</table>

W – Working; NA – needs adjustment; NW – needs to be dropped

The Utilities Department solicited public input to evaluate the current water conservation program and assist in sequentially producing a productive and successful water conservation program. The intent of soliciting information from the public was so that the Advisory Committee and residents would evaluate the current program and adopt and implement those conservation measures and behaviors that will lower the City’s GPCD. The City’s Water Conservation Coordinator performed an in depth procedure, which included collecting information from an established Advisory Committee, collecting suggestions and comments from local industry, institutional, and
commercial, and holding a public meeting. Further details on the process are outlined in
Section 3.1 along with recommendations found in Appendix E.

2.4 GPCD trends and projections

<table>
<thead>
<tr>
<th>Rate Class</th>
<th>Gallons per capita per day 2010</th>
<th>Gallons per capita per day 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family Resident</td>
<td>131.91</td>
<td>139.80</td>
</tr>
<tr>
<td>Multi Family Resident</td>
<td>64.66</td>
<td>67.05</td>
</tr>
<tr>
<td>Institutional, Commercial, & Industry</td>
<td>45.14</td>
<td>46.98</td>
</tr>
<tr>
<td>Overall</td>
<td>191.69</td>
<td>199.77</td>
</tr>
</tbody>
</table>

Using Table 2-3 above the LCU 2010 OSE GPCD Calculator Report showed a
decrease in water usage from 2009 to 2010 of 4 percent. For Las Cruces in 2009 and
2010 precipitation has been well below the average norm and temperatures have been
well above the average norm.

Precipitation and temperatures along with colder winters may be a factor that has
caused the GPCD rate to fluctuate. There is obviously a trend in water usage when
temperatures are high and precipitation is low in Las Cruces. For example, GPCD
usage in 2009 went up from 180.5 to 199.8 gallons. During 2009, temperatures
somewhat remained the same while precipitation from 2008 to 2009 went down by four
inches. Typically the Lower Rio Grande area receives 9 to 14 inches of rain annually. As
indicated above, seven years out of 11 years the total annual precipitation was below
the typical average. In January through June, 2011 New Mexico had the driest year on
record. Statewide precipitation was 30 percent below normal and the National Weather
Service reported that the Southern Desert was 8 percent below normal.
Table 2-4: GPCD Trends showing population, temperature, and precipitation for 2000 to 2010.

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
<th>GPCD</th>
<th>Max-Average Temperature (degree)</th>
<th>Annual Precipitation (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>72,333</td>
<td>255.3</td>
<td>95</td>
<td>7.44</td>
</tr>
<tr>
<td>2001</td>
<td>73,976</td>
<td>246.0</td>
<td>97</td>
<td>6.60</td>
</tr>
<tr>
<td>2002</td>
<td>75,884</td>
<td>234.2</td>
<td>98</td>
<td>5.81</td>
</tr>
<tr>
<td>2003</td>
<td>78,283</td>
<td>225.2</td>
<td>98</td>
<td>4.50</td>
</tr>
<tr>
<td>2004</td>
<td>80,967</td>
<td>210.2</td>
<td>94</td>
<td>13.56</td>
</tr>
<tr>
<td>2005</td>
<td>84,066</td>
<td>202.2</td>
<td>98</td>
<td>6.37</td>
</tr>
<tr>
<td>2006</td>
<td>85,435</td>
<td>201.4</td>
<td>96</td>
<td>16.24</td>
</tr>
<tr>
<td>2007</td>
<td>89,269</td>
<td>203.0</td>
<td>94</td>
<td>12.51</td>
</tr>
<tr>
<td>2008</td>
<td>91,551</td>
<td>180.5</td>
<td>97</td>
<td>12.51</td>
</tr>
<tr>
<td>2009</td>
<td>93,585</td>
<td>199.8</td>
<td>96</td>
<td>8.42</td>
</tr>
<tr>
<td>2010</td>
<td>95,338</td>
<td>191.7</td>
<td>94</td>
<td>7.13</td>
</tr>
</tbody>
</table>

Temperature and precipitation data taken from Jornada Experimental Range Coop Station (Western regional climate center).

While most precipitation occurs during the monsoonal season months (July and August); Las Cruces received less than an inch (.72") for the month of July. The National Weather Service is forecasting that our monsoonal season will be later or earlier than its typical norm. Temperatures for 2011 were much above the normal as shown in Table 2-4. Statewide New Mexico was ranked 107 out of 117 having the warmest temperatures on record.

2.4.1 Public water use

As industry in Las Cruces continues to grow, 12 percent from 2009 to 2010, the need for a sustainable water service will grow as well. In 2002 Las Cruces New Mexico was ranked the “Best small metro area for business and careers” by the Forbes-Milken Institute. In 2006, Forbes.com ranked Las Cruces in the top two “Best small metro area for business and careers”. The Milken Institute ranked Las Cruces as one of the “Top 3
small areas for business” in 2003 and one of the “Top 2 small areas for business” in 2004. These continued high rankings reinforce the area’s virtually untapped potential for business location and expansion (MVEDA, 2010). Furthermore, the City of Las Cruces passed the Local Economic Development Act, which encourages economic growth to the city. Projects creating jobs within the City of Las Cruces in the preferred industry clusters of aerospace, maquila suppliers, high technology, advanced business and financial services, and value-added food processing and which create above-average wage and salary jobs may qualify for local financial support.

Population has increased at an annual rate of 3 percent. Population in Las Cruces of persons over 65 years of age is expected to increase from 2010-2040 due to migration into the area, while all other age classes remain stable or decrease. Net migration into the Las Cruces area for 2010 was 3 percent (Badenhausen, 2011). Net migration into the Las Cruces area from 2000 to 2007 was 5.9 percent (City of Las Cruces Chamber of Commerce, 2011).

Water reuse has become an attractive use for golf courses and local parks here in Las Cruces. The LCU Department currently operates the East Mesa Wastewater Reclamation plant. The plant was designed to produce one million gallons per day of Class 1-A reclaimed wastewater. The plant currently produces 290,000 gals per day. In 2012 a new lift station will be completed and the East Mesa plant will be able to reach full production capacity. Many residents are looking for ways to use less water or to use water more than once. This has led several residents to inquire about the use of grey water and reclaimed water.
While new development has used water conserving devices and low water use landscape, approximately 75 percent of the buildings in Las Cruces were built pre-1995. Prior to 1994, the plumbing code allowed the installation of toilets that flushed with 3.5 gallons or more. Since then the American National Standard 2006 Uniform Plumbing Code specifies a maximum 1.6 gallon per flush standard. Today, toilets are even available at as little as 1.0 gallon per flush. With 75 percent of the buildings pre-1995 we can speculate that many of the homes and businesses in the City are still using toilets that use 3.5 or higher gallons per flush. The savings of a toilet rebate would be 102 million gallons per year\(^4\).

Industry growth, population increases, and aging infrastructure are just a few topic areas that illustrate the amount of public water demand that is placed upon the water provided by the City of Las Cruces.

2.6 Actions planned as part of the existing program

As originally developed, the water conservation program anticipated a Phase II for 2010 – 2015. In practice, Phase II will be developed as part of this Plan, and is intended to incorporate conservation measures drawn from a broad base of both established and innovative conservation programs. The intent stated in 2005 is for the program to continue to evolve in subsequent phases, and such phases are developed as part of this Plan.

\(^{4}\) Total of 17,459 buildings in Las Cruces pre-1995; using the current household multiplier 2.3 persons per building with at least 2 flushes per person for 265 days (Source: City of Las Cruces Community Development).
Separately, the 40 Year Plan identified measures that the City intended to implement to achieve a goal of 180 GPCD, although in that plan the target date was 2045. The measures include the effects of the water conservation program on outdoor water use, increased high-efficiency plumbing fixtures, the East Mesa reuse project, and a reduction in non-revenue water losses equal to or below the industry standard. The predicted effect of these measures was a reduction of nearly one (1) GPCD per year, although this quantification was only partially documented. Single family residential demand was projected to decrease to 121 GPCD, which is only four (4) GPCD less than already achieved. The 40 Year Plan noted that conservation will actually have a greater effect than the GPCD values indicate, since GPCD will tend to increase in urbanizing areas as commercial, industrial, and institutional development increase.

3 Goals of the Conservation Plan

The Lower Rio Grande Basin surface water supply and most of the groundwater supply is fully or over appropriated. If all the water right permits, licenses, and Declarations were fully exercised today, current supply would not likely meet demand. Voluntary agreements among water users such as shortage sharing, rotational use, water banking, or other forms of voluntary agreements are encouraged by the OSE (DeMouche, 2011).

The Vision 2040 survey conducted in 2008 showed that 91.3 percent of the respondents either agreed or strongly agreed that water conservation should be a high priority for the vision of the community (City of Las Cruces Vision 2040, 2011). Additionally, during a public meeting for the Sustainability Action Plan, residents
acknowledged that one of the goals of the action plan was to reduce water use in the city, private operations, ensuring that consumption will not deplete the aquifer over time. Participants stated that the City should encourage citizens and schools to use water conservation measures, the City should lead by example, continue water conservation education and outreach, and increase cost of violation for water conservation ordinance (City of Las Cruces, 2011).

The following is a list of identified goals for the Plan:

- Evaluate current water usage,
- Evaluate mandatory, voluntary, and other conservation measures for the Plan,
- Determine resource levels for the Plan,
- Determine sources of funding for the water conservation program,
- Develop priorities,
- Set measured goals and criteria for evaluation of these goals,
- Improve baseline information on City’s usage and update annually,
- Develop appropriate ordinances from the Plan,
- Increase enforcement of the Water Conservation Ordinances,
- Develop summer month surcharge for users exceeding some multiplier of the average delivery amount in each rate class and,
- Establish indoor and outdoor water audits for each rate class.

3.1 Process for obtaining public input for the plan

In 2009, LCU formed an advisory committee to assist in the development of the Plan. The committee consisted of six members from diverse areas of expertise. However, there were a few rate class gaps in the committee which included representation from tourism (hotels and restaurants), institutional users (hospitals), and community development (industry, commercial and new development). This representation has been added to the Advisory Committee. Appendix E gives a brief description of conservation measures considered and currently active by the Advisory Committee.
Beyond the initial advisory committee, the Water Conservation Coordinator organized and conducted a public meeting on October 6, 2011. Residents that were not able to attend the public meeting were able to send an e-mail to the Water Conservation Coordinator with their concerns and comments. A synopsis of the information collected from the community meeting and e-mails are attached in Appendix F.

The purpose of the public meeting was to obtain community input on the initial phase of the Plan. Las Cruces Utilities seeks to reach its water conservation decisions through a public process so that they reflect the community’s values. The public meetings brought significant input about community values, priorities, and objectives and how they can be reflected in water conservation activities. All information was placed on the City’s website for easy access. Additionally, the Utilities public relations firm assembled a newspaper release announcing the community meeting (Appendix G).

3.2 Reasons for conserving water

An initial subject for public discussion was to determine attitudes regarding the need for water conservation. Among the specific rationales for conservation that were debated were the following:

- Conservation is required because of the permit condition (Permit No. LRG-3275 et.al.).
- Conservation is already an established City and Utility policy and practice.
- Conservation is important as a general principle of sustainable living.
- Conservation is important because water supplies in the Lower Rio Grande Basin are scarce.
- Conservation is important because it will reduce the City’s need to acquire water rights and, in turn, reduce adverse impacts to irrigated agriculture.
- Conservation is important because it will delay costly investments in water infrastructure.
3.3 Specific conservation objectives

The main objective for the City of Las Cruces to develop and implement a Plan is a regulatory compliance. The OSE requires the City to develop and implement a Water Conservation Plan as one of the Conditions of Approval No. 5 for Permit No. LRG-3275 \textit{et.al.} POD 1 thru 7. However, the City additionally recognizes the benefits for considering water conservation which include:

- **Customer benefit** – customers who conserve will enjoy a lower water bill and possibly lower their wastewater and energy bills.
- **Environmental benefit** – less water being removed from the Rio Grande could be used for environmental and other purposes.
- **Utility stewardship and sustainability** – City water conservation demonstrates leadership in resource management working towards the goal of sustainability.
- **Cost savings** – lower water production can save the utility and its constituent’s money in reduced operations and maintenance and capital costs.
- **Improved supply reliability** – conserving water can reduce the frequency and duration of drought water use curtailments by essentially increasing supply.
- **Public perception** – the public often insists on demonstrating efficient use of water supplies.

4 Conservation measures to be enacted 2012

Measures to achieve water conservation in Las Cruces fall into three overall categories:

1. program actions,
2. voluntary measures, and
3. mandatory measures.

Program actions refer to measures that the City of Las Cruces operations can take directly to implement or encourage water conservation. Voluntary measures refer to education or incentives that promote water conservation. Mandatory measures are regulatory. These measures will be combined and phased in over time. The Plan will supersede and enhance the current water conservation program. It is LCU intent to
update the Plan every five (5) years. This document will replace any past documentation towards the water conservation program and ordinance.

4.0.1 Basis for selection of measures for evaluation

The basis used for the measures selected is to acquire a clear and accurate direction of water conservation measures that will be accepted by the Las Cruces Utilities Board of Commissioners and the public. Las Cruces Utilities went through a process of evaluating the various recommendations in the Plan for the value to the water conservation program versus the difficulty of implementation. The principles used to access the success of the water conservation program are outlined below:

- Effectiveness or change in behavior, as shown in the following measures:
 - GPCD
 - Volume of water used by Utilities
 - Volume of water used in non-revenue category
- Knowledge and understanding:
 - AWWA Audit
 - Data availability
 - Level of metering
 - Level of reporting to OSE
- Broad, equitable participation
- Political will/buy-in
 - Conservation adoption of ordinances
 - Public support
- Rates
 - Conservation rates – inclining block
 - Water efficiency surcharge

4.1 Program Actions

City program actions are important to encourage residents and business to practice water conservation by exhibiting good water conservation practices. The City will continue to take a proactive approach to water conservation by identifying water conservation opportunities, continuously monitoring water consumption in City buildings,
parks and other operations, and reduce water consumption in City operations by 5 percent. All of the City buildings will undertake a water efficiency or leak detection audit every 5 years. Recommendations from the audits will be used to reduce water consumption.

The City will use the AWWA Audit guidelines to reduce system water loss, specifically non-revenue water, which includes system loss, unbilled metered and unbilled unmetered use. Additionally, the Water Conservation Coordinator will use the OSE Calculator monthly to evaluate sector water usage to allow programs to focus on high water usage by sector.

The City will furthermore implement an Automatic Meter Reading (AMR) program. The program, Phase I will be implemented on commercial meters and will be phased in over time in Las Cruces.

4.2 Voluntary Measures

The Water Conservation Coordinator will organize and oversee a program to inform and obtain comments from the public. At least one public meeting will be organized annually to inform and receive comments from the public concerning the water conservation program. Other methods for information distribution, such as water bill inserts, news articles, and website will also be utilized. The City will use the information from the public meetings to update the Plan every 5 years.

4.2.1 Water Efficiency or Leak Detection Audits

The Water Conservation Coordinator will organize and oversee a program to conduct water audits. Water audits will be conducted on all city buildings by December, 2013. Audits will be conducted every five years on city buildings to reevaluate
recommendations. The City has a very aggressive goal to lower water consumption 5 percent by 2015.

Indoor and landscape audits are offered to the public starting October, 2011. Audits include retrofitting faucets with 1 gallon aerators and distribution of 1.5 gallon showerheads. The Water Conservation Coordinator will conduct landscape audits upon certification of landscape auditor test from Irrigation Association. Since 75 percent of the buildings in Las Cruces were built pre-1994, indoor audits for pre-1994 building structures will be initially targeted. LCU anticipates the audit program to show a consumptive savings of at least 1 to 5 percent for the next ten years.

4.2.2 Education

Children will be informed and taught about water conservation. The Water Conservation Coordinator will work with the Las Cruces Public Schools to determine when and how the conservation program can be integrated into school programs.

Public education programs shall be instituted to promote water efficiency. The Water Conservation Coordinator will work with City staff, other affected public agencies and the private sector to develop promotional information, seminars and workshops to promote the use of low water use landscaping and water use efficiency. Promotional materials will be available by early 2014 and seminars and workshops will be scheduled by the middle of 2012. While classroom educational programs have shown behavioral changes at home, it is difficult to quantify the percentage change in water consumed. However, LCU does anticipate a savings in consumption of outdoor water usage from the seminars and workshops to promote the use of low water use landscape. LCU anticipates a savings of at least 2 percent over the next 5 years.
4.2.3 Promotions and Incentives

The Water Conservation Coordinator will organize and oversee programs to encourage and promote “green build certification” for fixtures, graywater systems\(^5\), and homes remodeled to “EPA WaterSense” standards. Programs will be developed in coordination with local building and real estate organizations to promote and encourage new development to install indoor fixtures beyond the current Uniform Plumbing Codes and graywater systems for outdoor landscape water usage.

4.2.4 Rainwater Harvesting

The Water Conservation Coordinator will organize and oversee a program to encourage rainwater harvesting. Rainwater harvesting strategies encouraged will include earthworks and cisterns (barrels). Programs will be developed with the City Landscape Architect to educate persons as to how to select, place, and construct chosen water harvesting earthworks. Programs will also include construction of rainwater harvesting barrels, roof catchment, and low impact development.

4.2.5 Reuse and reclaimed water

The Water Conservation Coordinator will organize and oversee a program to encourage the use of reuse water. Near future plans are to install a purple hydrant at the East Mesa Reclamation Plant to allow temporary uses. Currently the City East Mesa Discharge Permit allows the discharge from to:

- Las Cruces City Veterans Park,

\(^5\) Graywater is wastewater from laundry, bathtubs, showers, and bath sinks (lavatories). Persons wishing to use a graywater system must follow the New Mexico Gray Water Reuse Rules (§20.7.3.810 NMAC – Rp, §20.7.3.310 NMAC, 2005).
• Las Cruces City Sagecrest Park,
• Facilities that have been separately permitted by NMED to receive reclaimed water from the permitted, and;
• Temporary use for construction purposes, dust control, and irrigation of street medians.

4.2.6 Retrofit Program

Currently the City has a retrofit program through water audits. Water audits retrofit sink aerators and showerheads. If funding is available, the City will implement a high efficiency toilet (HET) retrofit program. The HET rebate program will allow homeowners who receive a water bill from LCU to submit an application for a WaterSense EPA HET. Currently the City has applied for Bureau of Reclamation Water SMART funding. If awarded the City will have a HET and SMART irrigation controller retrofit program starting Fall 2012. Additional funding will be sought for water conservation retrofit/rebate programs.

4.2.7 Rates

Las Cruces Utilities set water rates based on the Utilities cost of service rate setting methodology to reflect the true cost of producing, distributing and maintaining a water utility system, such as construction of water supply facilities, heavy equipment, management, training, operation and maintenance, water quality laboratory tests, depreciation, interest on debt or capital, and taxes; along with establishment of a reserve fund for future improvements, extensions, and expansions and the replacement of system components that reach end of operating life.

As stated earlier, the City of Las Cruces went through a water and wastewater rate case in 2008-2009. The structure of the increasing block rates are two tiers with a summer peak and non-summer peak rates (Appendix C). During the rate hearing the
RAC did recommend to the Utilities Board that the water rates be re-evaluated for conservation with a need for inclining block rates, which would be October, 2012. Las Cruces Utilities will investigate the possibility of adding a third tier rate that will address water conservation issues. The Water Conservation Coordinator will develop a white paper that will identify different studies that have addressed the use of rates for water conservation. This white paper will be presented to the Board with the intent of the Board taking or not taking action to initiate a water efficiency surcharge. The Las Cruces Utilities Board is the governing mechanism to approve or disapprove utilities rates.

4.2.8 Landscape and irrigation design standards

City of Las Cruces design standards, which include landscape and irrigation, are currently being evaluated. The following landscape design and irrigation requirements have been presented to the committee and may become part of the design standards to be presented to City Council. If the landscape and irrigation standards listed below are not approved by City Council then the following are strictly recommendations for reducing landscape water usage on both public and private properties and will be encouraged by the water conservation program as voluntary measures. However, if these standards are accepted by City Council, they will be enforced through the Design Standards and the Water Conservation Plan.

4.2.8.1 Landscape design

Low water use landscaping for private properties shall be promoted. The following specifications will be encouraged for all new development.

1.) It is recommended that high water use turf not be planted on slopes greater than 4:1.
2.) It is recommended that all publicly owned properties other than parks and golf courses use medium and low water use plants on 100% of the landscape area.

3.) It is recommended that all privately owned properties other than golf courses use medium and low water use turf in no more than 80% of the landscape area.

4.) It is recommended that all privately owned properties other than golf courses use high water use turf in no more than 20% visible in public or private right-of-way.

5.) It is recommended that any existing features should be evaluated for incorporation in design to include natural drainages, rock outcroppings, and strong stands of native vegetation which can be protected, detention area where vegetation has grown and is being supported by nuisance flows or harvested water.

6.) It is recommended that fountains using over 500 gallons of make-up water (water that is consumed and must be replaced by additional water) per day are not promoted. Multiple fountains on the same property will be considered one fountain to determine usage. Water used in fountains shall be recycled to minimize water usage.

7.) Decorative ponds proposed for aesthetic or ornamental purposes and containing no more than 10 percent of the properties landscape area are highly discouraged. This does not apply to government owned detention basins, which may contain more than one-half acre of surface area.
4.2.8.2 Irrigation System

The following standards apply to all new development. The standards serve only as guidelines unless adopted by City Council through the design standards.

1.) Irrigation systems are encouraged to be designed in conformance with all provisions in the Water Conservation Plan and Design Standards.

2.) Irrigation systems are encouraged to be designed to minimize water waste, overwatering, over spraying, and susceptibility to vandalism.

3.) Irrigation systems are encouraged to be designed to be site-specific, reflecting plant type, soil type, infiltration rates, slopes, and prevailing wind direction. Subsurface and drip irrigation are highly recommended.

4.) Irrigation systems are encouraged to be controlled by an automatic controller having multiple programming capabilities. Irrigation systems shall be reprogrammed as needed to reflect the age of plants and the season. Irrigation systems that use smart technology are highly recommended to minimize water waste and overwatering.

5.) Temporary irrigation systems will be allowed for erosion control and revegetation plants.

6.) Valves should be utilized to regulate water pressure, prevent water hammer and possible damage to piping and fittings, and prevent line drainage and cross contamination.

7.) Sprinkler heads are encouraged to be installed at least 18 inches away from any imperious surface and shall not spray toward the imperious surface.

8.) Spray heads should not be used in street medians.
9.) All new turf landscape areas cumulative to over a quarter of an acre are encouraged to have a Landscape Irrigation Audit performed by an authorized Landscape Irrigation Auditor, certified by the Irrigation Association. The audits will be conducted in accordance with the current edition of the Landscape Irrigation Auditors Handbook. The audit shall be performed prior to the installation of turf or seed. The minimum efficiency requirements recommended in the audit are a 55% distribution uniformity for all spray systems and 65% distribution uniformity for all rotary systems.

10.) Landscape planting and irrigation system design plans are recommended for all development and should be reviewed.

11.) All landscape areas on privately owned properties with a landscape meter are recommended to follow the recommended water budget requirements:
 a. Water budget means maximum annual water allowance in gallons per year;
 b. For Las Cruces, NM 53” is the average annual requirement in inches per year for warm season turf and 34” is the average annual requirements in inches for cool season turf based on historic water use in Las Cruces (Leinauer, 2011);
 c. 0.62 is the conversion factor from ET inches to gallons;
 d. LA is the landscape area in square feet;
 e. Properties are encouraged to install an irrigation flow meter immediately downstream from the City landscape water meter.
12.) All existing public parks and golf courses are recommended to use medium and low water use plants as much as possible. High water use turf is recommended in those areas with heavy usage or foot traffic, such as athletic fields, playgrounds, and golf course tees, greens and fairways.

13.) All existing golf courses are encouraged to only use up to only 44 inches of water per landscaped acre per year. All new golf courses or existing golf course expansion permitted by the City after the effective date of the water conservation plan are encouraged to use up to only 37 inches per landscaped acre per year.

14.) All existing public parks are encouraged to use up to only 36 inches of water per landscaped acre per year.

15.) All new public parks permitted after the effective date of the water conservation plan are encouraged to use up to only 36 inches per landscaped acre per year. Any usage over the allowable amount will be subject to the excess use surcharge(s) described above.

4.3 Mandatory Measures (Demand Side)

4.3.1 General

The outdoor vegetation watering restrictions contained in this section shall apply to all users of city-provided water and to all users of water provided by water utility companies franchised by the city. As new development continues in the area with smaller lot sizes, with desert landscaping, with applicable plumbing code restrictions adopted by City of Las Cruces, and with the mandatory measures set forth in the Plan; LCU anticipates a steady decrease in consumption.
Outdoor watering restrictions do not apply to users of irrigation water provided by EBID or to users of water provided by mutual domestic water companies.

4.3.2 Schedule for Outdoor Vegetation Watering

The outdoor vegetation watering restrictions will follow a schedule for residential and commercial properties:

1.) All outdoor vegetation on residential and commercial properties located on the even numbered side of the street shall be watered only on Tuesday, Thursday, and Saturday and on the odd numbered side of the street shall be watered on Wednesday, Friday, and Sunday. No watering is allowed on Monday. For corner buildings or properties having both odd and even numbers, the number shown on the City’s or the franchised water company’s utilities records shall control.

2.) From April 1 to October 1, all outdoor vegetation watering is prohibited between the hours of 10:00 a.m. and 6:00 p.m.

3.) The schedule does not apply to the following:

4.) Drip irrigation, subsurface irrigation, low precipitation bubblers, hand watering, or watering containerized plants and plant stock.

5.) Outdoor irrigation necessary to establish newly sodded lawns and landscaping within the first 45 days of planting upon the issuance of a water restriction waiver by the Water Conservation Coordinator.

6.) Outdoor irrigation necessary to establish newly seeded lawns with the first 120 days of planting upon the issuance of a water restriction waiver by the Water Conservation Coordinator.
7.) Outdoor irrigation necessary to establish inter-seeded lawns within the first 90 days of planting upon the issuance of a water restriction waiver by the Water Conservation Coordinator.

8.) Irrigation necessary for one day only where treatment with an application of chemicals requires immediate watering to preserve an existing landscape or to establish new landscaping.

9.) Water used to control dust or to compost soil

10.) An attended watering system that has one or more repair or maintenance personnel present at the irrigated zone being serviced for purposes of inspecting system condition and function and/or repairing or maintaining the water system.

11.) A water restriction waiver granted by the Water Conservation Coordinator for good cause shown.

12.) Below is a table outlining the annual schedule for outdoor water restrictions:

| Table 4-1: Residential and Commercial Properties Water Restriction Schedule |
|-----------------------------|-----------------------------|-----------------------------|
| Month | Time Restriction | Day Restriction |
| October – March | None | Even address water Tuesday, Thursday, & Saturday |
| | | Odd address water Wednesday, Friday, & Sunday |
| April- September | Outdoor watering prohibited between the hours of 10:00 a.m. and 6:00 p.m. | Even address water Tuesday, Thursday, & Saturday |
| | | Odd address water Wednesday, Friday, & Sunday |
4.3.3 Water Wasting Restrictions

The following water wasting restrictions apply to all water users within the City limits:

1.) Landscape water applied in such a manner, rate, and/or quantity that it overflows the landscape area being watered and runs into adjacent property or public right-of-way.

2.) Landscape water which leaves a sprinkler, sprinkler system, or other application device in such a manner or direction as to spray onto adjacent property or public right-of-way.

3.) Washing of vehicles, equipment, or hand surfaces such as parking lots, aprons, pads, driveways, or other surfaced areas when water is applied in sufficient quantity to flow from that surface onto adjacent property or the public right-of-way.

4.) Water applied in sufficient quantity to cause ponding on impervious surfaces.

5.) Water applied in sufficient quantity to cause ice formation on adjacent property or public right-of-ways.

6.) Shutoff nozzles are required on any hoses used for hand watering, car washing, or other outdoor uses.

4.3.4 Exceptions to Water Wasting

The following are exceptions to water wasting:

a. Stormwater runoff allowed under the provisions of the City of Las Cruces design standards as currently adopted or subsequently amended.

b. Flow resulting from temporary water supply system failures or malfunctions. These failures or malfunctions shall be repaired within 48 hours of notification or the system shut off until repair can be completed.
c. Flow resulting from fire protection or routine inspections of fire hydrants or from fire protection training.

d. Flow resulting from water breaks and routine inspection, operation, or maintenance of a utility water supply system.

e. Water used for construction or maintenance activities where the application of water is the appropriate methodology and where no other practical alternative exists.

f. Use of water that is permitted under a variance granted by the Water Conservation Coordinator. Variances will need to be requested annually to the Water Conservation Coordinator.

4.3.5 Penalty:

Any person who is convicted of a violation of any section of the mandatory regulations stated in this water conservation plan shall be guilty of a petty misdemeanor and shall be fined as follows based on the type of property upon which the violation occurred and on the number of prior convictions.

<table>
<thead>
<tr>
<th>Conviction</th>
<th>Residential Property</th>
<th>Non-residential Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>$50</td>
<td>$100</td>
</tr>
<tr>
<td>Second</td>
<td>$100</td>
<td>$250</td>
</tr>
<tr>
<td>Third and subsequent conviction</td>
<td>$250</td>
<td>$500</td>
</tr>
</tbody>
</table>

For purposes of this section a “person” who can be cited may be one of the property owners; the water utility customer of record for the property; a tenant or any person over the age of 18 years residing at or occupying the property; or an officer,
manager or general agent of the property owner or of the business located on the property.

Persons cited pursuant to this section may still be held liable regardless of the conduct or lack of conduct of an individual or business performing or responsible for performing landscaping or yard maintenance services on the property, or regardless of the effect of an automated water sprinkler or delivery system on the property.

4.4 Supply Side Water Conservation (including but not limited to)

Las Cruces Utilities has 30 supply wells, of which 28 are currently active. All wells are metered; thus, 100 percent of the City’s water supply sources are metered. A portable meter is used to test the accuracy of each well at least twice a year. Las Cruces Utilities has a SCADA system which automatically logs meter data on a continuous basis and these data are reviewed at least once a month.

The vast bulk of water mains are associated with new subdivisions and development. The commissioning of new mains is governed by the subdivision regulation which sets forth requirements for permitting and commissioning mains. When mains are installed, there are very accurate paper records and over time they are converted into electronic records. The City does not have a third party auditor for leak detection. Water pipes are replaced every 30 years. Additionally LCU works in collaboration with the City Public Works to replace water and sewer pipes when work is being done on streets.
4.4.2. Meter Program

Las Cruces Utilities uses “Munis” to track accounts with high or low usage. The meter shop can run a query that will flag those accounts that have high or low usage, using a threshold of 200 percent. Once the accounts are flagged, an investigation is completed to identify why there has been a sudden change in usage. Typically, the investigation focuses on the meter and possible leakage. Currently, the LCU has contracted a private third party auditor to conduct a meter testing program for commercial meters. This audit will begin in 2012.

Las Cruces Utilities has a meter program that replaces residential meters every seven years. However, LCU is in the progress of developing Phase I Automatic Remote Metering System (ARM) that will target high/low usage commercial accounts with more than 200 meters. Additionally, LCU will work to extend the program to cover all accounts throughout the City. LCU anticipates the ARM program will contribute to a savings in consumption.

5 Program Evaluation

As an input to the Water Conservation Plan, Utilities went through a process of evaluating the various recommendations listed in Chapter 4 for the value to the water conservation program versus the difficulty of implementing these programs as listed in the works cited.

6 Munis is the City’s computer customer service system.
5.1 Analysis methods and evaluation criteria

The OSE Calculator and AWWA Audit will be used to assess the water conservation program over the next 10 years. The Calculator will show the monthly effectiveness or change in behavior for single family residential, multi-family residential, and small and large commercial accounts. The AWWA Audit will show the effectiveness or change in usage by Utilities for revenue and non-revenue water. Additionally, the adoption of this water conservation plan by the LCU Board will confirm political buy-in and public support.

The Water Conservation Program will continue to examine or develop tracking tools that will assist the program in evaluating water savings, costs, and benefits of the conservation program for LCU. LCU is a member of the Alliance for Water Efficiency (AWE) and will use the tracking tools and materials associated with this program to assist the conservation program, especially the AWE tracking tool. The tracking tool, which provides a standardized methodology for water savings and benefit-cost accounting, track the implementation of water savings, which includes the cost and benefits of the conservation activities over time, evaluate utilities changing revenue requirements with conservation, and estimate the changes from the plumbing codes and conservation program activities through rebates and audits.

Additionally, LCU will conduct surveys and periodic public meetings to assess changes in public perception and practices as the water conservation program is implemented. In order to assist residents, businesses, and institutions in assessing changes to conserve water, the City will create on the water conservation website a water usage calculator that will calculate actual water usage and potential water
savings. The calculator will be developed by the City IT and Water Conservation Coordinator in 2012 and will be used as an educational tool for the program.

6 Implementation plan

As noted earlier, Utilities has examined a combination of program actions, including voluntary and mandatory measures. The mandatory measures will be regarded as regulatory, being enforced and monitored by the Las Cruces Police Department’s Codes Enforcement Unit and the Water Conservation Coordinator. The voluntary measures, which are ways to encourage residents and businesses to conserve voluntarily and as a way to introduce water conservation education, will be combined with the mandatory measures over time. The mandatory measures will begin immediately with the adoption of this water conservation plan. Some of the mandatory measures language will mirror the City Design Standards concerning landscaping of new development.

Implementation of the Plan requires the continuation of developing the water conservation program and funding. Steps toward implementing the Plan will include but not limited to:

1. City of Las Cruces as a role model – The City has already taken steps through the City Strategic Plan to lower water consumption by five percent. Additionally, education programs will be implemented for all staff. These actions will assist in educating staff on how to implement water conservation measures. The ease of implementation will depend on the attitudes toward and understanding of conservation within the City. Additionally, with
assistance through the Parks department the Water Conservation Coordinator will measure a baseline of current water use for each park within the City. From this baseline a new irrigation schedule for minimizing ET will be developed along with replacing sprinkler heads, and mowing education.

2. Education – Education will be a valuable factor in affecting the behavioral changes required for water conservation. Through the program, Utilities will implement a Communication Plan that will be used as a tool to educate City residents and businesses. The Water Conservation Coordinator will work with a Public Relations firm to establish the elements of the Communication Plan and a Water Conservation Campaign. The campaign will include publicizing incentive programs, voluntary measures, mandatory measures, and educational programs.

3. County involvement – The water conservation program will engage County leadership on the Water Conservation Plan and its message and implementation.

4. New Mexico State University (NMSU) involvement - The water conservation program will engage NMSU leadership on the Water Conservation Plan and its message and implementation. NMSU is not within the boundaries of the City of Las Cruces; however since both NMSU and the City use the same aquifers, they will be encouraged to team up with the City and conserve water. Additionally, the water conservation program will work with NMSU faculty and
Water Resource Research Institute (WRRI) to develop and implement conservation educational workshops and grant funding projects.

6.1 Implementation of measures

The Design Standards Committee has reviewed the landscape and irrigation standards. The Committee did specify that several of the measures will only be supported for new development in the City. However, since 75 percent of the buildings in Las Cruces are pre-1995 the Committee did see the need to possibly implement additional measures in later years of the program.

6.2 Implementation of single family and multi-family residential measures

While historically the City has been already engaged in conserving water, there are certain areas where the public may not be actively engaged; such as graywater, xeriscaping, and drip irrigation. These measures are an important part of the conservation program, engaging the public and providing education in the tools needed to conserve water. The incentive programs for SFR will require new sources of funding, staff time, and political support.

6.3 Implementation of industry, commercial, and institutional (ICI) measures

The measures to conserve water in existing and new businesses and institutions will require Utilities to work closely with stakeholders. One of the programs to assist in the implementation for ICI is to create a recognition program for measures that save water under ICI. Recognition could range from a published thank you on the City website; a thank you for the measures taken published in the local newspaper; decals
that the business or institution could place in their window; collaboration with the Chamber of Commerce for recognition; or a formal recognition dinner.

6.4 Enforcement

Much of the implementation for the mandatory measures will be enforcement. As stated earlier, enforcement falls under the Las Cruces Police Codes Enforcement Unit. Although the mandatory measures can be adopted using existing Codes staff, it is likely that enforcement may incur a cost, whether for new equipment, training, overtime, or other items.

7 Methodology for water conservation program

Methodology used to evaluate the water conservation plan included the following approaches:

- Research significant water conservation programs within and outside New Mexico.
- Collect and review policies, programs, issues, and reports from other cities water conservation programs within Las Cruces population base.
- Develop an advisory committee with key individuals to discuss possible water conservation programs and projects.
- Discuss with various key individuals from the Water Conservation Alliance on their City’s water conservation program and policies, how they measured effectiveness, target programs, and other information.
8 Works Cited

Glossary

Acre-foot - a volume of water that would cover one acre to a depth of one foot, or 325,850 gallons of water.

Adaptive plants - non-indigenous plants that easily adapt to the climate and thus require little or no supplemental irrigation once established.

Adjusted water budget - an amount of water used to maintain a landscape that is based on area and ET rate.

Aquifer - Underground water-bearing geologic formation or structure.

Arable - Having soil or topographic features suitable for cultivation.

Arid - a climate characterized by less than 10 inches of annual rainfall.

Audit (end-use) - a systematic accounting of water uses conducted to identify opportunities for improved efficiency.

Automatic irrigation - delivery of water to a landscape using a timer, a system of valves, and sprinklers.

Automatic irrigation controller - an irrigation timer capable of operating valve stations to set the days and length of time of water applications.

Automatic Valve - an irrigation valve which can be remotely operated. The remote operation method may be either electrical (the most common) or hydraulic. Automatic valves are commonly used as "control valves" for irrigation systems.

Backflow prevention device - a safety device used to prevent reverse flow of water back into a potable water supply line; typically used in conjunction with automatic irrigation systems.

Ball valve - a type of valve that controls the water by means of a rotating ball with a hole through the center of it. When the hole is aligned with the water flow the water flows freely through the valve with almost no friction loss. When the ball is rotated so that the hole is not aligned the flow is completely shut off.

Baseline - an established value or trend used for comparison when conditions are altered.
Block-rate pricing - a method of charging for water based on the volume used. As more water is used, the price increases (or decreases) through a series of blocks. These pricing structures are designed to encourage efficient use of a resource.

Bubbler - a type of sprinkler head that delivers water to a level area where the water slowly infiltrates to the soil. Typically used to irrigate shrubs and trees.

Budget (water budget) - an accounting of water use for a given activity or location over a fixed period of time.

Central irrigation control - a computerized system that programs sprinkler clocks from a centralized location using a computer.

Check valve - a device that prevents drainage of water from the low points of an irrigation circuit after irrigation stops.

Cistern - a tank (often underground) use to store water (often rainwater or graywater).

Conservation - increasing the efficiency of energy use, water use, production, or distribution; the act of conserving or preserving from injury or loss; the protection of rivers, forests and other natural resources.

Conservation pricing - water rate structures that increase the price of water as more water is used with the goal of encouraging more efficient use.

Consumptive use (evapotranspiration) - combined amounts of water needed for transpiration by vegetation and for evaporation from adjacent soil, snow, or intercepted precipitation. Also known as crop requirement, crop irrigation requirement, and consumptive use requirement.

Cool-season grass - turf grass varieties that are typically not damaged by sub-freezing temperatures. Includes such grasses as bluegrass, Kentucky bluegrass, perennial rye grass, red fescue, and tall fescue.

Cost-effectiveness - a comparison of total benefits against total costs.

Decreasing block rate - Pricing that reflects per-unit costs of production and delivery that go down as customers consume more water.

Deep percolation - the movement of water by gravity downward through the soil profile beyond the root zone; plants do not use this water.

Demand forecast - a projection of future water use.
Demand management - the practice of systematically reducing water use for a broad spectrum of utility customers through efficiency measures and conservation, often as an alternative to purchasing new water or expanding water treatment facilities.

Demand scheduling - method of irrigation scheduling whereby water is delivered to users as needed and which may vary in flow rate, frequency and duration. Considered a flexible form of scheduling.

Design Pressure - the total pressure available to operate an irrigation system.

Distribution efficiency - measure of the uniformity of irrigation water distribution over a field.

Distribution system - a system of pipes and valves that conveys water from a treatment plant to end users.

Diversion (water) - removal of water from its natural channels for human use.

Drainage - the process of removing surface or subsurface water from a soil or area.

Drip irrigation - a type of micro-irrigation systems that delivers water is slow drips to plants through a network of plastic pipes and emitters.

Drought - climatic condition in which there is insufficient soil moisture available for normal vegetative growth for an extended period of time.

Drought condition - the hydrologic conditions during a defined drought period in which rainfall and runoff are much less than average.

Dual-flush toilet - a toilet designed to use a lower volume of water to flush liquid wastes and a higher volume of water to flush solid wastes.

Effective precipitation - the total depth of rainfall minus the volume lost to evaporation and leaching during a specific time period.

Efficiency - the use of a resource that maximizes the benefit and minimizes consumption of the resource.

Effluent - wastewater, treated or untreated, that flows out of a treatment plant, sewer, or industrial outfall.

Emitter - a drip irrigation system fitting that delivers water to plants at a slow and predictable rate.

End use - fixtures, appliances, plumbing devices, equipment, and activities that use water.
End user - a consumer of water; a utility water customer.

Environment - the sum of all external influences and conditions affecting the life and development of an organism or ecological community.

Erosion - a gradual wearing away of soil or rock by running water, waves, or wind.

Established landscape - a landscape that has been in place for an extended period of time where the roots of the plants are well developed.

Evaporation - the process by which water changes from liquid to vapor.

Evapotranspiration (ET) - water lost from the surface of soils and plants through the processes of evaporation and transpiration combined.

Evapotranspiration (ET) rate - a measure of the amount of water required to maximize plant growth. This measure is calculated from climatic conditions and factors such as temperature, solar radiation, humidity, wind, time of year, precipitation, etc.

Faucet aerator - a device that can be installed in a sink to reduce water flow rate by adding air to the water.

Fixed charge - the portion of a water bill that does not vary with water use.

Fixed costs - costs for a utility that do not vary with the amount of water produced, delivered, and sold to customers.

Flood irrigation - a method of irrigating where water is applied from field ditches onto land that has no guide preparation such as furrows, borders or corrugations.

GPCD - gallons per capita per day

gpd - gallons per day

gpf - gallons per flush

gph - gallons per hour

gphd - gallons per household per day

gpl - gallons per load (of laundry or dishes)

gpm - gallons per minute

gpy - gallons per year
Graywater - domestic wastewater composed of wash water from kitchen sinks, bathroom sinks and tubs, clothes washers, and laundry tubs that can be used for non-potable purposes such as irrigation.

Green industry - the industry that includes design, maintenance, installation, and management of landscapes.

Groundwater - water beneath the earth’s surface.

Groundwater recharge - the flow to groundwater storage from precipitation, infiltration from streams, and other sources of water; the use of reclaimed wastewater, by surface spreading or direct injection, to prevent saltwater intrusion into freshwater aquifers, to store the reclaimed water for future use, to control or prevent ground subsidence, and to augment non-potable or potable ground water aquifers.

Groundwater table - the upper boundary of groundwater where water pressure is equal to atmospheric pressure, i.e., water level in a bore hole after equilibrium when groundwater can freely enter the hole from the sides and bottom.

Hardscape - landscaped areas covered by non-living materials such as concrete, bricks, rocks, wood, pavement, etc.

High-water-use landscape - a landscape made up of plants, turf and features that requires 50 to 80% of the reference evapotranspiration to maintain optimal appearance.

Horticultural practices - activities to maintain plants and landscapes such as fertilization, mowing, and thatch control.

Hydrology - science dealing with the properties, distribution, and flow of water on or in the earth.

Hydrozone - a portion of a landscaped area comprising plants with similar water requirements.

Increasing block rate - pricing that reduces water use by structuring water rates to increase per-unit charges as the amount used increases.

Invasive plant - a non-indigenous plant that invades and takes over substantial areas of an ecosystem.

Irrigation audit - an on-site evaluation of an irrigation system to assess its water-use efficiency as measured by distribution uniformity, irrigation schedule, and other factors.

Irrigation controller - a sprinkler clock or timer.
Irrigation cycle - a scheduled application of water by an irrigation system with a defined start time and duration. A cycle may include multiple watering zones.

Irrigation efficiency - the ratio of the average depth of irrigation water that is beneficially used to the average depth of irrigation water applied, expressed as a percent. Beneficial uses include satisfying the soil water deficit and any leaching requirement to remove salts from the root zone.

Irrigation requirement - quantity of water, exclusive of effective precipitation, that is required for maintaining a landscape.

Irrigation scheduling – carefully chosen irrigation application rates and timing to help irrigators maintain yields with less water.

Irrigation timer - a device that can be programmed to regulate the time and duration of irrigation; a sprinkler clock.

Irrigation water requirement - a measure of the water required in addition to precipitation to obtain desired crop yield.

Landscape area - the total area on a property that contains landscaping elements. Usually equivalent to the total area minus the building footprint and paved driveways and paths.

Landscape water requirement - a measure of the supplemental water required to maintain the optimum health and appearance of landscape plants and features.

Leak detection - Systematic methods for identifying water leakage from pipes, plumbing fixtures, and fittings.

Low-flow faucet - a faucet that uses no more than 2.5 gallons per minute at 80 pounds of pressure per square inch.

Low-flow plumbing - plumbing equipment that uses less water than was considered standard prior to January 1, 1994.

Low-flow showerhead - A showerhead that requires 2.5 gallons of water per minute or less.

Low-flush toilet - a toilet that requires 1.6 gallons of water per flush or less.

Low-volume urinal - a urinal that uses no more than 1.0 gallons per flush.

Low-water-use landscape - use of plants that are appropriate to an area's climate and growing conditions.
Low-water-use plants - plants that require less than 30% of reference ET to maintain optimum health and appearance.

Medium-water-use plants - plants that require 30 to 50 percent of reference ET to maintain optimum health and appearance.

Meter - an instrument that measures the volume of water use.

Metering - use of metering equipment that can provide essential data for charging fees based on actual customer use.

mgd - million gallons per day.

mgy - million gallons per year.

Multiple start times - an irrigation schedule where the system is programmed to start and run several times during the day.

Native landscape - a landscape that features plants and grasses indigenous to the region.

Native plants - plants that are indigenous to a region and require litter or no supplemental irrigation after establishment.

Natural landscape - a landscape created to reflect the character and spirit of nature and the native surroundings.

Nonconsumptive water use - water withdrawn for use but not consumed and thus returned to the source.

Non-residential water use - water use by industrial, commercial, institutional, public, and agricultural users.

Peak demand - the highest total water use experienced by a water system.

Peak/off-peak rates - rates charged in accordance with the most and least popular hours of water use during the day.

Per capita use - the amount of water used by one person during one 24 hour period. Typically expressed as gallons per capita per day (GPCD).

Percolation - downward movement of water through the soil profile or other porous media.

Percolation rate - (1) the rate at which water moves through porous media, such as soil; and (2) intake rate used for designing wastewater absorption systems.
Plant water requirement - the amount of irrigation water needed to replace moisture depleted from the soil around plant roots as a result of evapotranspiration.

Pop-up sprinkler head - a sprinkler head that retracts below ground level when it is not operating.

Potable water - water that is safe for drinking.

Precipitation rate - the amount of water applied by a sprinkler system in a specific unit of time.

Rain sensor - a device that automatically shuts off an irrigation system after a set amount of precipitation falls.

Rain switch - a simple on/off switch on an irrigation system that makes it easy to shut the system down during a rainstorm.

Rainwater harvesting - the capture and use of runoff from rainfall.

Rationing - mandatory water use restrictions typically imposed during a drought.

Recharge - the addition of water to the groundwater supply by natural or artificial means.

Recirculating cooling water - recycling cooling water to greatly reduce water use by using the same water to perform several cooling operations.

Reclaimed water - wastewater that is treated and reused to supplement water supplies.

Recycled water - a type of reuse water usually run repeatedly through a closed system; sometimes used to describe reclaimed water.

Reference evapotranspiration (ET₀) - the evapotranspiration of a broad expanse of adequately watered cool-season grass 4 to 6 inches in height. A standard measurement for determining maximum water allowances for plants so that regional differences in climate can be accommodated.

Reservoir - a body of water, such as a natural or constructed lake, in which water is collected and stored for use.

Residential water use - water use in homes and apartments.

Retrofit - replacement of existing equipment with equipment that uses less water.

Return flow - that portion of the water diverted from a stream that finds its way back to the stream channel, either as surface or underground flow.
Riparian - of, on, or pertaining to the bank of a river, pond, or lake.

Riser - the connection between a sprinkler or other irrigation device and the pipe that supplies the water to it.

Root zone - that depth of soil which plant roots readily penetrate and in which the predominant root activity occurs.

Runoff - the portion of precipitation, snow melt, or irrigation that flows over the soil, eventually making its way to surface water supplies.

Secondary treatment - the second step in most publicly owned waste treatment systems, which removes floating and settleable solids and about 90 percent of the oxygen-demanding substances and suspended solids. Disinfection is the final stage of secondary treatment.

Secondary wastewater treatment plant - a facility that reduces pollutants and suspended solids to a greater level than that achieved by a primary treatment plant; the water goes through additional treatment processes, producing "cleaner" wastewater.

Seepage - the movement of water into and through the soil from unlined canals, ditches, and water storage facilities.

Self-closing faucet - a faucet that automatically shuts off the water flow after a designated amount of time, usually a few seconds.

Semi-arid climate - a climate characterized by 10 to 20 inches of annual precipitation.

Service area - the geographic area served by a water utility.

Simple water budget - a water budget that is the product of reference evapotranspiration, irrigated area, and a conversion factor.

Soil classification - the systematic arrangement of soils into classes of one or more categories or levels to meet a specific objective. Broad groupings are made on the basis of general characteristics, and subdivisions are made on the basis of more detailed differences in specific properties.

Soil conservation - protection of soil against physical loss by erosion and chemical deterioration by the application of management and land-use methods that safeguard the soil against all natural and human-induced factors.

Soil moisture - water stored in soils.
Soil moisture sensor - a device placed in the ground at the plant root zone depth to measure the amount of water in the soil. Soil moisture sensors are also used to control irrigation and signal whether watering is required or not.

Source protection - protection of a water source, ranging from simple sanitary surveys of a watershed to the development and implementation of complex land use controls, in an effort to avoid water contamination.

Spray head - a sprinkler nozzle that delivers water in a fixed spray pattern.

Sprinkler heads - devices that distribute water over a given area for irrigation.

Sprinkler irrigation - a method of irrigation in which the water is sprayed, or sprinkled, through the air to the ground surface.

Static water pressure - water pressure as measured when the water is not moving. The "not moving" part is critical, if the water is moving it isn't "static". When measuring static water pressure all the water outlets on the pipe must be closed. So if you're measuring the static pressure at a house you connect the pressure gauge, then take the reading while all the faucets, the ice maker, etc., are turned off.

Stream rotors - sprinkler heads that deliver rotating streams of water in arcs or full circles at relative low precipitation rates.

Subirrigation - applying irrigation water below the ground surface either by raising the water table within or near the root zone, or by use of a buried perforated or porous pipe system that discharges directly into the root zone.

Subsurface irrigation - applying irrigation water below the ground surface either by raising the water table within or near the root zone, or by use of a buried perforated or porous pipe system that discharges directly into the root zone.

Surface soil - upper part of the soil ordinarily moved in tillage, or its equivalent in uncultivated soils, about 10 to 20 cm in thickness.

Surface water - an open body of water such as a river, stream, or lake.

Supplemental irrigation - the application of water to a landscape to supplement natural phenomena.

Surcharge - a special charge included on a water bill to recover costs associated with a particular activity, facility, use, or to convey a message about water prices to customers.

Surface irrigation - the application of water to land by surface flow.

Surface water supply - water supplied from a stream, lake, or reservoir.
Tailwater - applied irrigation water that runs off the lower end of a field. Tailwater is measured as the average depth of runoff water, expressed in inches or feet.

Tall fescue - a hybridized cool-season turf grass characterized by deeper root systems and greater drought tolerance than bluegrass.

Tiered pricing - increasing block-rate pricing.

Toilet displacement device - a toilet retrofit device (such as a dam, bag, bottle, or rock) used to displace water in the toilet tank in order to reduce the volume required for flushing.

Toilet flapper - the valve that controls flushing in a gravity-tank toilet.

Transpiration - the transfer of water vapor from plants to air.

Turf - hybridized grass that forms a dense growth of blades and roots when regularly mowed.

Utility - public water service provider.

Valve - a device used to control the flow of water. Isolation valves are used to shut-off water for repairs. Control valves turn on and off the water to the individual circuits of sprinklers or drip emitters. Check valves allow the water to flow in only one direction. Master valves are located at the water source and turn on and off the water for the entire irrigation system when not in use.

Valve zone - an area where irrigation is all controlled by a single control valve. Each valve zone must be within only one hydrozone.

Warm-season turf grass - turf grass that grows vigorously during warm summer months but goes dormant or dies at temperatures below 50ºF. Includes such grasses as bermuda grass, buffalo grass, St. Augustine grass, and zoysia grass.

Wastewater - spent or used water from individual homes, a community, a farm, or an industry that contains dissolved or suspended matter.

Wastewater treatment plant - a facility with an engineered system designed to remove pollutants, such as phosphorus and nitrogen, from municipal and industrial wastewater for discharge into surface waters.

Water audit - an on-site survey and assessment of water-using hardware, fixtures, equipment, landscaping, irrigation systems, and management practices to determine the efficiency of water use and to develop recommendations for improving water use efficiency.
Water budget - the amount of water required to maintain plants in a landscape; a method of establishing water efficiency standards by prescribing limits on water applications to landscapes.

Water conservation - activities designed to reduce the demand for water, improve efficiency in use, and reduce losses and waste of water.

Water conservation incentive - an effort designed to promote customer awareness about reducing water use and motivate customers to adopt specific conservation measures.

Water conservation measure - an action, behavioral change, device, technology, or improved design or process implemented to reduce water loss, waste or use.

Water delivery system - Reservoirs, canals, ditches, pumps, and other facilities to move water.

Water demand - water requirements for a particular purpose, as for irrigation, drinking, toilet flushing, bathing, clothes washing, etc.

Water efficiency - accomplishment of a function, task, process, or result with the minimal amount of water feasible; an indicator of the relationship between the amount of water required for a particular purpose and the quantity of water used or delivered.

Water efficiency measure - a specific tool or practice that results in more efficient water use and thus reduces water demand.

Water efficiency standard - criterion creating maximum or acceptable levels of water use.

Water efficient landscape - a landscape that minimizes water demand through design, installation, and management.

Water feature - a pool, fountain, water sculpture, waterfall, or other decorative element that includes water. Many water features recycle water thus reducing consumption.

Water harvesting - the capture and use of runoff from rainfall.

Water holding capacity - amount of soil water available to plants. See available soil water.

Water quality - the chemical, physical, and biological characteristics of water.

Water reclamation - the treatment of wastewater to make it reusable, usually for non-potable purposes.
Water recycling - the treatment of urban wastewater to make it reusable for a specific beneficial purpose.

Water reuse - using wastewater or reclaimed water from one application for another application. The deliberate use of reclaimed water or wastewater must be in compliance with applicable rules for a beneficial purpose (landscape irrigation, agricultural irrigation, aesthetic uses, ground water recharge, industrial uses, and fire protection).

Water right - under the riparian system, a legally protected claim to take possession of water occurring in a natural waterway and to divert that water for beneficial use; under the prior appropriation system, a property or legal claim to withdraw a specified amount of water in a specified time frame for beneficial use.

Watershed - the area of land from which all precipitation and runoff drain into a single water source.

Water surcharge - imposition of a higher rate on excessive water use.

Water system - a series of interconnected treatment and conveyance facilities owned and operated by a water supplier.

Water table - in an unconfined aquifer, the top of the saturated zone; the level at which a well penetrates the top of an unconfined aquifer.

Water transfers - selling or exchanging water or water rights among individuals or agencies.

Water use efficiency - employing water-saving practices to reduce costs and to slow the depletion of the water supply to ensure future water availability.

Weather station - a facility where meteorological data are gathered.

Wetlands - lands including swamps, marshes, bogs, and similar areas such as wet meadows, river overflows, mud flats, and natural ponds. An area characterized by periodic inundation or saturation, hydric soils, and vegetation adapted for life in saturated soil conditions.

Xeriscape™ - a tradmarked term denoting landscaping that involves the selection, placement, and care of low-water-use and native ground cover, turf, plants, shrubs, and trees. Xeriscape is based on seven principles: proper planning and design, soil analysis and improvement, practical turf areas, appropriate plant selection, efficient irrigation, mulching, and appropriate maintenance.
Pursuant: This spreadsheet-based water audit tool is designed to help quantify and track water losses associated with water distribution systems and identify areas for improved efficiency and cost recovery. It provides a "top-down" summary water audit format, and is not meant to take the place of a full-scale, comprehensive water audit format.

Use: The spreadsheet contains several separate worksheets. Sheets can be accessed using the tabs towards the bottom of the screen, or by clicking the buttons on the left below. Descriptions of each sheet are also given below.

The following key applies throughout:

- Value can be entered by user
- Value calculated based on input data
- These cells contain recommended default values

Please begin by providing the following information, then proceed through each sheet in the workbook:

- **Name of City or Utility:** Las Cruces Utilities
- **Country:** USA
- **Reporting Year:** 2010
- **Start Date (MM/YYYY):** 01/2010
- **End Date (MM/YYYY):** 01/2011

Please select preferred reporting units for water volume: Acre-feet

If you have questions or comments regarding the software please contact us at: wlc@awwa.org
Water Audit Report for: Las Cruces Utilities
Reporting Year: 2010 1/2010 - 1/2011

Please enter data in the white cells below. Where available, metered values should be used; if metered values are unavailable please estimate a value. Indicate your confidence in the accuracy of the input data by grading each component (1-10) using the drop-down list to the left of the input cell. Hover the mouse over the cell to obtain a description of the grades.

All volumes to be entered as: ACRE-FEET PER YEAR

WATER SUPPLIED

Volume from own sources: 20,235.168 acre-ft/yr
Master meter error adjustment (enter positive value): 0.000 acre-ft/yr
Water imported: 0.000 acre-ft/yr
Water exported: 0.015 acre-ft/yr

WATER SUPPLIED: 20,235.153 acre-ft/yr

AUTHORIZED CONSUMPTION

Billed metered: 17,027.196 acre-ft/yr
Billed unmetered: 43.117 acre-ft/yr
Unbilled metered: 124.100 acre-ft/yr

AUTHORIZED CONSUMPTION: 17,194.413 acre-ft/yr

WATER LOSSES (Water Supplied - Authorized Consumption)

Apparent Losses: 3,040.740 acre-ft/yr
Unauthorized consumption: 50.588 acre-ft/yr
Customer metering inaccuracies: 172.427 acre-ft/yr
Systematic data handling errors: 172.000 acre-ft/yr
Apparent Losses: 395.015 acre-ft/yr

WATER LOSSES: 3,040.740 acre-ft/yr

NON-REVENUE WATER

NON-REVENUE WATER: 3,207.957 acre-ft/yr

SYSTEM DATA

Length of mains: 390.0 miles
Number of active AND inactive service connections: 30,327
Average length of customer service line: 78 ft (pipe length between curbstop and customer meter or property boundary)
Average operating pressure: 70.0 psi

COST DATA

Total annual cost of operating water system: $12,881,237
Customer retail unit cost (applied to Apparent Losses): $1.95/1000 gallons (US)
Variable production cost (applied to Real Losses): $2.08/acre-ft

PERFORMANCE INDICATORS

Financial Indicators

Non-revenue water as percent by volume of Water Supplied: 15.9%
Non-revenue water as percent by cost of operating system: 2.81%
Annual cost of Apparent Losses: $250,997
Annual cost of Real Losses: $5,503

Operational Efficiency Indicators

Apparent Losses per service connection per day: 11.63 gallons/connection/day
Real Losses per service connection per day: 73.88 gallons/connection/day
Real Losses per length of main per day: N/A
Real Losses per service connection per day per psi pressure: 1.11 gallons/connection/day/psi
Unavoidable Annual Real Losses (UARL): 623.46 acre-feet/year
From Above, Real Losses = Current Annual Real Losses (CARL): 2,645.72 acre-feet/year
Infrastructure Leakage Index (ILI) [CARL/UARL]: 4.24

WATER AUDIT DATA VALIDITY SCORE:

*** YOUR SCORE IS: 75 out of 100 ***

A weighted scale for the components of consumption and water loss is included in the calculation of the Water Audit Data Validity Score.

PRIORITY AREAS FOR ATTENTION:

Based on the information provided, audit accuracy can be improved by addressing the following components:

1. Water exported
2. Volume from own sources
3. Billed metered
<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Own Sources (Adjusted for known errors)</td>
<td>20,235.168</td>
<td>Water Exported 0.015</td>
</tr>
<tr>
<td></td>
<td>20,235.168</td>
<td>Water Supplied</td>
</tr>
<tr>
<td></td>
<td>20,235.153</td>
<td>Authorization Consumption 17,194.413</td>
</tr>
<tr>
<td></td>
<td>17,027.196</td>
<td>Billed Authorized Consumption 17,027.196</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>Billed Water Exported 0.015</td>
</tr>
<tr>
<td></td>
<td>17,027.196</td>
<td>Billed Metered Consumption (inc. water exported)</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>Billed Unmetered Consumption</td>
</tr>
<tr>
<td></td>
<td>17,027.196</td>
<td>Revenue Water</td>
</tr>
<tr>
<td></td>
<td>43.117</td>
<td>Unbilled Authorized Consumption 167.217</td>
</tr>
<tr>
<td></td>
<td>124.100</td>
<td>Unbilled Metered Consumption</td>
</tr>
<tr>
<td></td>
<td>124.100</td>
<td>Unbilled Unmetered Consumption</td>
</tr>
<tr>
<td></td>
<td>3,207.957</td>
<td>Non-Revenue Water (NRW)</td>
</tr>
<tr>
<td></td>
<td>3,207.957</td>
<td>Total Revenue Water</td>
</tr>
<tr>
<td></td>
<td>50.588</td>
<td>Apparent Losses 395.015</td>
</tr>
<tr>
<td></td>
<td>172.427</td>
<td>Customer Metering Inaccuracies 172.427</td>
</tr>
<tr>
<td></td>
<td>172.000</td>
<td>Systematic Data Handling Errors 172.000</td>
</tr>
<tr>
<td></td>
<td>2,645.725</td>
<td>Real Losses 2,645.725</td>
</tr>
<tr>
<td></td>
<td>172.000</td>
<td>Leakage on Transmission and/or Distribution Mains</td>
</tr>
<tr>
<td></td>
<td>172.000</td>
<td>Leakage and Overflows at Utility's Storage Tanks</td>
</tr>
<tr>
<td></td>
<td>172.000</td>
<td>Leakage on Service Connections 172.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leakage on Transmission and/or Distribution Mains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not broken down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leakage and Overflows at Utility's Storage Tanks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not broken down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leakage on Service Connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not broken down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Real Losses</td>
</tr>
</tbody>
</table>
Grading Matrix

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Grading</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume from own sources:</td>
<td>1.0</td>
<td>Select this grading if the water utility has no source of own water resources. Less than 25% of water production is metered, remaining sources are estimated. No regular meter accuracy testing.</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>25% - 50% of treated water production sources are metered, other sources estimated. No regular meter accuracy testing.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>50% - 75% of treated water production sources are metered, other sources estimated. Occasional meter accuracy testing.</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>At least 75% of treated water production sources are metered, at least 90% of the source flow is balanced, water source flow is monitored accurately. Meter accuracy testing and/or electronic calibration conducted annually less than 65% of treated water sources are metered, meter accuracy testing and electronic calibration conducted semi-annually with, less than 10% found outside of +/- 3% accuracy.</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>100% of treated water production sources are metered, meter accuracy testing and electronic calibration conducted annually less than 10% of meters found outside of +/- 3% accuracy.</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>100% of treated water production sources are metered, meter accuracy testing and electronic calibration conducted annually with, less than 10% found outside of +/- 3% accuracy.</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>100% of treated water production sources are metered, meter accuracy testing and electronic calibration conducted annually with, less than 10% found outside of +/- 3% accuracy.</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>100% of treated water production sources are metered, meter accuracy testing and electronic calibration conducted annually with, less than 10% found outside of +/- 3% accuracy.</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>100% of treated water production sources are metered, meter accuracy testing and electronic calibration conducted annually with, less than 10% found outside of +/- 3% accuracy.</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>Standardized meter accuracy test frequency; semi-annual, or more frequent. All meters. Repair or replace meters outside of +/- 3% accuracy. Continually investigate/improve metering technology.</td>
</tr>
</tbody>
</table>

Improvements to attain higher grading for "Volume from own Sources" component:

- To qualify for 2: Organize efforts to begin to collect data for determining volume from own sources.
- To qualify for 4: Formalize annual meter accuracy testing for all meter sources. Conduct installation of meters on unmetered water production sources and complete replacement of all obsolete/defective meters.
- To qualify for 6: Hourly production meter data logged automatically & reviewed on a weekly basis. Data adjusted to correct gross error from equipment malfunction & results of meter accuracy testing. Tank/storage facility elevation changes are automatically used in calculating a balanced "Volume from own sources" component.
- To qualify for 8: Complete project to install new, or replace defective existing, meters so that the entire production meter population is metered. Repair or replace meters outside of +/- 3% accuracy.
- To qualify for 10: Maintain annual meter accuracy testing for all meters. Repair or replace meters outside of +/- 3% accuracy. Investigate new meter technology, pilot one or more replacements with innovative meters in attempt to improve meter accuracy.

Water Imported:

- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
- Select n/a if the water utility has no source of imported water.
Water Exported:

- **Select n/a if the water utility sells no bulk water to neighboring water utilities (no exported water sales).**
- Less than 25% of exported water sources are metered, remaining sources are estimated. No regular meter accuracy testing.
 - 25% - 50% of exported water sources are metered, other sources estimated. No regular meter accuracy testing.
 - 50% - 75% of exported water sources are metered, other sources estimated. Occasional meter accuracy testing.
 - At least 75% of exported water sources are metered, meter accuracy testing and/or electronic calibration conducted annually. Less than 5% of metered meters are found outside of +/- 1% accuracy.
 - 100% of exported water sources are metered, meter accuracy testing and/or electronic calibration conducted annually. Less than 10% of metered meters are found outside of +/- 3% accuracy.

Improvements to attain higher exportation levels

Exported Volume component:

- To qualify for 5:
 - Reduce bulk water sales agreements with partners as applicable; confirm requirements for use & upkeep of accurate metering. Identify needs to install new, or replace defective meters as needed.
- To qualify for 4:
 - Purchase meters, install meters on unmetered exported water interconnections and replace obsolete/defective meters.
- To qualify for 3:
 - Improve accuracy of existing meters. Conduct planning and budgeting for large scale meter replacement.
- To qualify for 2:
 - Launch regular meter replacement program. Set meter replacement goals based upon appropriate meter models.
- To qualify for 1:
 - Launch pilot project to improve metering technology. Investigate/pilot improving metering technology.

Billed metered:

- **Select n/a (not applicable) if the entire customer population is not metered and is billed for water service on a flat or fixed rate basis.** In such a case the volume entered must be zero.
- Less than 50% of customers with volume-based billing from meter readings; flat or fixed rate billed for the majority of the customer population.
 - At least 50% of customers with volume-based billing from meter reads; flat rate billed for others. Manual meter reading, under 50% read success rate, remained estimated. Limited meter records, no regular meter testing or replacement. Billing data maintained in paper records, with no auditing.
 - At least 75% of customers with volume-based billing from meter reads; flat or fixed rate billed for measured consumption. Conducting meter information during meter read visits to identify age/time of existing meters. Test a minimal number of meters for accuracy. Install computerized billing system.
 - At least 90% of customers with volume-based billing from meter reads; remaining accounts are estimated. Manual customer meter reading gives at least 80% customer meter reading success rate, billed reads are estimated. Good customer meter records, limited meter accuracy testing, regular replacement of oldest meters. Computerized billing records with routine auditing of global statistics.
- Water utility policy does require customer metering; flat or fixed rate billed. Some metered accounts exist in parts of the system (pilot areas or District Metered Areas) with consumption recorded on portable data-loggers. Data from these sample meters are used to infer consumption for the total customer population. Site specific estimation methods are used for unusual buildings/water uses.

Improvements to attain higher metered consumption component:

- **Select n/a if the customer meter population is unmetered, consider establishing a new policy to meter the population and employ water rates based upon measured volumes.**
- Purchase and install meters on unmetered accounts. Implement policies to improve meter reading success. Catalog meter information during meter read visits to identify age/time of existing meters. Test a minimal number of meters for accuracy. Install computerized billing system.
- Purchase and install meters on unmetered accounts. Implement policies to improve meter reading success. Catalog meter information during meter read visits to identify age/time of existing meters. Test a minimal number of meters for accuracy. Install computerized billing system.
- Purchase and install meters on unmetered accounts. Launch Automatic Meter Reading (AMR) System trials if manual meter reading success rate of at least 95% is not achieved within a five-year program. Continue meter accuracy testing program. Conduct planning and budgeting for large scale meter replacement based upon meter life cycle analysis using cumulative flow target. Continue routine auditing and require annual third party review.
- Purchase and install meters on unmetered accounts. Launch Automatic Meter Reading (AMR) System trials if manual meter reading success rate of at least 95% is not achieved within a five-year program. Continue meter accuracy testing program. Conduct planning and budgeting for large scale meter replacement based upon meter life cycle analysis using cumulative flow target. Continue routine auditing and require annual third party review.

Billed unmetered:

- **Select n/a if the policy of the water utility to meter all customer connections and if it has been confirmed by detailed auditing that all customers do indeed have a meter; i.e. no unmetered accounts exist.**
- Water utility policy does not require customer metering; flat or fixed rate billed. No data collected on customer consumption. Only estimates available are derived from data estimation methods used on average future counter multiplied by number of connections, or similar approach.
- Water utility policy does not require customer metering; flat or fixed rate billed. Some metered accounts exist in parts of the system (pilot areas or District Metered Areas) with consumption recorded on portable data-loggers. Data from these sample meters are used to infer consumption for the total customer population. Site specific estimation methods are used for unusual buildings/water uses.
- Water utility policy does require metering and volume based billing for all customer accounts. However, less than 5% of billed accounts remain unmetered because installation is hindered by unusual circumstances. The goal is to minimize the number of unaccounted for accounts. Reliable estimates of consumption are obtained for unmetered accounts via site specific estimation methods.
- Water utility policy requires metering and volume based billing for all customer accounts. Water loss control Best Management Practices (BMP) and/or innovative metering technology, pilot one or more replacements with innovative meters in attempt to improve meter accuracy.
Grading Matrix

Grading

<table>
<thead>
<tr>
<th>Grading Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Investigate a new water utility policy requiring customer metering. Implement pilot metering project by installing water meters in small sample of customer accounts and adjusting the water consumption.</td>
</tr>
<tr>
<td>2</td>
<td>Implement a new water utility policy requiring customer metering. Expand pilot metering study to include several different meter types, which will provide data for economic assessment of full-scale metering options. Assess sites with access difficulties to devise means to obtain water consumption volumes.</td>
</tr>
<tr>
<td>3</td>
<td>Budget for staff resources to review billing records to identify unmetered properties. Specify metering needs and funding requirements to install sufficient meters to significantly reduce the number of unmetered accounts.</td>
</tr>
<tr>
<td>4</td>
<td>Install customer meters on a full scale basis. Refine metering policy and procedures to ensure that all accounts, including municipal properties, are designated for meters. Implement procedures to obtain reliable consumption estimate for unmetered accounts awaiting meter installation.</td>
</tr>
<tr>
<td>5</td>
<td>Continue customer meter installation throughout the service area, with a goal to minimize unmetered accounts. Sustain the effort to investigate accounts with access difficulties to devise means to install water meters or otherwise measure water consumption.</td>
</tr>
<tr>
<td>6</td>
<td>Clearly written policy identifies the types of accounts given a billing exemption. Customer meter management and meter reading for these accounts is given proper priority and is reliably conducted. Regular auditing confirms this. Total water consumption for these accounts is taken from reliable readings from accurate meters.</td>
</tr>
</tbody>
</table>

Conditions

Conditions between 2 and 4
- Dated written procedures permit billing exemption for specific accounts, such as municipal properties, but are unclear regarding other types of accounts. Meter reading is given low priority and is sporadic. Consumption is quantified from meter readings where available. The total number of unmetered, unmetered accounts must be estimated along with consumption volumes.

Conditions between 4 and 6
- Written policies regarding billing exemptions exist but adherence to the practice is questionable. Metering and meter reading for municipal buildings is reliable but sporadic for other unmetered metered accounts. Periodic auditing of such accounts is conducted. Water consumption is quantified directly from meter readings where available, but the majority of the consumption is estimated.

Conditions between 6 and 8
- Written policy identifies the types of accounts granted a billing exemption. Customer meter management and meter reading for these accounts are considered secondary priorities, but meter reading is conducted at least annually to obtain consumption volumes for the annual water audit. High-level auditing of billing records ensures that a reliable census of such accounts exists.

Improvements to attain higher data grading for "Billing Exempt Unmetered Consumption" component:

to qualify for 2: Reassess the water utility’s policy allowing certain accounts to be granted a billing exemption. Draft an outline of a new written policy for billing exemptions, with clear justification as to why any account should or should not be exempt from billing, and with the attention to keep the number of such accounts to a minimum.

to qualify for 4: Review historic written directives and policy documents allowing certain accounts to be billing-exempt. Develop an outline of a written policy for billing exemptions, identify criteria that grants an exemption, with a goal of keeping the number of accounts to a minimum.

to qualify for 6: Draft a new written policy regarding billing exemptions based upon consensus criteria that ensure proper account management. Conduct inspections of accounts confirmed in unmetered/unbilled status and verify that accurate meters exist and are scheduled for routine meter readings.

to qualify for 8: Communicate billing exemption policy throughout the organization and implement procedures that ensure proper account management. Establish a system for annual auditing process to ensure that water consumption is reliably collected and provided to the annual water audit process.

Improvements to attain highest data grading for "Unbilled Unmetered Consumption" component:

to qualify for 2: Investigate a new water utility policy requiring certain accounts, such as municipal properties, but are unclear regarding other types of accounts. Meter reading is given low priority and is sporadic. Consumption is quantified from meter readings where available. The total number of unmetered, unmetered accounts must be estimated along with consumption volumes.

to qualify for 4: Review historic written directives and policy documents allowing certain accounts to be billing-exempt. Develop an outline of a written policy for billing exemptions, identify criteria that grants an exemption, with a goal of keeping the number of accounts to a minimum.

to qualify for 6: Draft a new written policy regarding billing exemptions based upon consensus criteria that ensure proper account management. Conduct inspections of accounts confirmed in unmetered/unbilled status and verify that accurate meters exist and are scheduled for routine meter readings.

to qualify for 8: Communicate billing exemption policy throughout the organization and implement procedures that ensure proper account management. Establish a system for annual auditing process to ensure that water consumption is reliably collected and provided to the annual water audit process.

Unbilled metered:

to qualify for 2: Select n/a if all billing-exempt consumption is unmetered.

to qualify for 4: Billing practices exempt certain accounts, such as municipal buildings, but only scattered, dated written directives exist to justify this practice. A reliable count of unbilled metered accounts is unavailable. Meter upkeep and meter reading on these accounts is rare and not considered a priority. Due to poor reconditioning and lack of auditing, water consumption for all such accounts is purely estimated.

to qualify for 6: Dated written procedures permit billing exemption for specific accounts, such as municipal properties, but are unclear regarding other types of accounts. Meter reading is given low priority and is sporadic. Consumption is quantified from meter readings where available. The total number of unmetered, unmetered accounts must be estimated along with consumption volumes.

to qualify for 8: Written policies regarding billing exemptions exist but adherence to the practice is questionable. Metering and meter reading for municipal buildings is reliable but sporadic for other unmetered metered accounts. Periodic auditing of such accounts is conducted. Water consumption is quantified directly from meter readings where available, but the majority of the consumption is estimated.

to maintain 10: Clearly written policy identifies the types of accounts given a billing exemption, with emphasis on keeping such accounts to a minimum. Customer meter management and meter reading for these accounts is given proper priority and is reliably conducted. Regular auditing confirms this. Total water consumption for these accounts is taken from reliable readings from accurate meters.

Unbilled unmetered:

to qualify for 2: Extent of unbilled, unmetered consumption is unknown due to uncooperativeness and poor reconditioning. Total consumption is quantified based upon a purely subjective estimate.

to qualify for 4: Coherent policies exist for some uses (ex: unmetered fire connections regulating consumption), but other uses (ex: miscellaneous uses of fire hydrants) have limited information. Total consumption is a mix of well quantified use such as from formulas (time x typical flow) or temporary meters, and relatively subjective estimate of less regulated use.

to qualify for 6: Clear policies exist to identify permitted use of water in unmetered, unmetered fashion, with the intention of minimizing this type of consumption. Good records document each occurrence and consumption is quantified via formulas (time x typical flow) or use of temporary meters.
Grading

Improvements to attain higher data grading for "Unbilled Unmetered Consumption" component:

<table>
<thead>
<tr>
<th>m/a</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>to qualify for 5:</td>
<td>Utilize accepted default value of 1.25% of system input volume as an expedient means to gain a reasonable quantification of this use.</td>
<td>to qualify for 5:</td>
<td>Utilize accepted default value of 1.25% of system input volume as an expedient means to gain a reasonable quantification of this use.</td>
<td>Finalize policy and do field checks. Proceed if top-down audit exists and/or a small sample of such use is suspected.</td>
<td>to qualify for 8:</td>
<td>Assess water utility policy and procedures to ensure that fire hydrant permits are issued for use by persons outside of the utility. Create written procedures for use and documentation of fire hydrants by water utility personnel.</td>
<td>to qualify for 9:</td>
<td>Clear policies and good recordkeeping exist for certain events (ex: tampering with water meters), other occurrences have limited oversight. Total consumption is a combination of volumes from formulas (time x typical flow) and subjective estimates of unconfirmed consumption.</td>
<td>to maintain 10:</td>
<td>Continue to refine policy and procedures with intention of reducing the number of allowable uses of water in unbilled and unmetered fashion. Any uses that can feasibly become billed and metered should be converted eventually.</td>
</tr>
</tbody>
</table>

Unbilled unmetered consumption:

- Extent of unauthorized consumption is understood due to unclear policies and poor recordkeeping. Total unauthorized consumption is approximated.
- Conditions between 2 and 4

- Conditions between 6 and 8

- Conditions between 2 and 10

- Conditions between 6 and 8

- Conditions between 2 and 10

- Conditions between 6 and 8

- Conditions between 2 and 10

- Conditions between 6 and 8

- Conditions between 2 and 10

- Conditions between 6 and 8

Customer metering inaccuracies:

- If n/a is selected because the customer meter population is unmetered, consider establishing a new policy to meter the customer population and employ water rates based upon metered volumes.
- Conditions between 2 and 4

- Conditions between 6 and 8

- Conditions between 2 and 10

- Conditions between 6 and 8

- Conditions between 2 and 10

- Conditions between 6 and 8

- Conditions between 2 and 10

- Conditions between 6 and 8

- Conditions between 2 and 10

- Conditions between 6 and 8

- Conditions between 2 and 10

- Conditions between 6 and 8

AWWA Water Loss Control Committee
Grading Matrix
Grading Matrix

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Sound policy exists for permitting of all customer accounts. Robust computerized billing system gives high functionality and reporting capabilities. Assessment of policy and data handling errors conducted internally and audited by third party. Automation ensuring consumption loss to billing lapses is minimized and detected as it occurs.</td>
</tr>
<tr>
<td>8</td>
<td>Improvements to attain higher data grading for "Systematic Data Handling Error" component: to qualify for 8: Finalize written policy for permitting and billing; implement a computerized customer billing system. Conduct initial audit of billing records by flow-chaining the basic business processes of the customer account/billing function.</td>
</tr>
<tr>
<td>6</td>
<td>Improvements to attain higher data grading for "Conditions of Service Connections" component: to qualify for 6: Review and budget for automation of Computerized billing system. Conduct initial audit of billing records by flow-chaining the basic business processes of the customer account/billing function.</td>
</tr>
<tr>
<td>4</td>
<td>Improvements to attain higher data grading for "Systematic Data Handling Error" component: to qualify for 4: Complete inventory of paper records of water main installations & tabulations. Create a system for managing new water mains installations. Conduct initial audit of billing records by flow-chaining the basic business processes of the customer account/billing function.</td>
</tr>
<tr>
<td>2</td>
<td>Improvements to attain higher data grading for "Systematic Data Handling Error" component: to qualify for 2: Finalize written policy for permitting and billing; implement a computerized customer billing system. Conduct initial audit of billing records as part of this process.</td>
</tr>
<tr>
<td>0</td>
<td>No written policy for permitting and billing. Computerized billing system not in use with basic reporting capabilities. Annual internal checks conducted with periodic third party audit. Accountability checks flag billing lapses. Consumption loss to billing lapses is high and review is conducted internally and third party audits are conducted annually.</td>
</tr>
</tbody>
</table>

Systematic Data Handling Error:
- Note: all water utilities incur some amount of this error!
- Even in water utilities with unmetered customers and fixed rate billing, errors occur in annual billing calculations. Enter a positive value for the volume and select a grading.

Length of mains:
- Properly assembled and maintained paper work files of existing water mains installations makes accurate determination of system pipe length impossible. Length of mains is estimated.
- Paper records in poor condition (no annual tracking of installations & abandonments). Poor procedures to ensure that new water mains installed by developers are accurately documented.
- Sound policy and procedures for permitting and documenting new water mains installations, but gaps in management result in a unmanaged increase in errors or omission of tabulation of mains length.
- Sound policy and procedures exist for permitting and documenting new water mains. Highly accurate, paper records with periodic field validation, or electronic records and asset management system in good condition. Includes system backup.
- Sound policy and procedures exist for permitting and commissioning new service connections. Launch random field checks of limited number of locations. Convert to electronic databases with backup as justified.
- Link Geographic Information System (GIS) and asset management databases, conduct field verification of data.
- Continue with standardization and random field validation to improve knowledge of system.

Improvements to attain higher data grading for "Length of Water Mains" component:
- to qualify for 10: Close any procedural loopholes that allow installations to go undocumented. Link computerized information management system with Geographic Information System (GIS) information, geographic information, field validation proves truth of databases.
- to maintain 10: Continue with standardization and random field validation to improve knowledge of system.

Number of active AND inactive service connections:
- Vague permitting of new service connections policy and procedures for recoding of customer connections/billings result in suspect determination of the number of service connections, which may be 0-5% in error from actual count.
- General permitting policy exists but paper records, procedural gaps, and weak oversight result in questionable total for number of connections, which may vary 5-10% of actual count.
- Periming policy and procedures exist, but with some gaps in performance and oversight. Computerized information management system is being brought online to replace dated paper re cordskeeping system. Reasonably accurate tracking of service connection installations & abandonments, but count can be up to 5% in error from actual total.
- Periming policy and procedures are adequate and reviewed periodically. Computerized information management system is in use with annual installaations & tabulations. Total limited field verifications and audits. Error in count of number of service connections is believed to be no more than 3%.
- Periming policy and procedures are adequate and reviewed periodically. Computerized information management system is in use with annual installaations & tabulations. Total limited field verifications and audits. Error in count of number of service connections is believed to be no more than 3%.
- Close any procedural loopholes that allow installations to go undocumented. Link computerized information management system with Geographic Information System (GIS) information, geographic information, field validation proves truth of databases.
- Continue with standardization and random field validation to improve knowledge of system.

Improvements to attain higher data grading for "Number of Active and Inactive Customer Service Connections" component:
- to qualify for 10: Draft new policy and procedures for permitting and billing. Research and collect paper records of installations & abandonments for several years prior to audit year.
- to qualify for 8: Review and budget for automation of Computerized billing system. Conduct initial audit of billing records by flow-chaining the basic business processes of the customer account/billing function.
- to qualify for 6: Review and budget for automation of Computerized billing system. Conduct initial audit of billing records by flow-chaining the basic business processes of the customer account/billing function.
- to qualify for 4: Review and budget for automation of Computerized billing system. Conduct initial audit of billing records by flow-chaining the basic business processes of the customer account/billing function.
- to qualify for 2: Review and budget for automation of Computerized billing system. Conduct initial audit of billing records by flow-chaining the basic business processes of the customer account/billing function.
- to maintain 10: Continue with standardization and random field validation to improve knowledge of system.
Grading

<table>
<thead>
<tr>
<th>n/a</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>

Gradings 1-9 apply if customer properties are unverified. If customer meters exist and are located inside the customer building premises, or if the water utility owns and is responsible for the entire service connection piping from the water main to the customer premises, in any of these cases the average distance between the curbstop or boundary separating utility/customer responsibility for service connection piping, and the typical first point of use (ex. faucet) or the customer meter must be quantified. Gradings 1-9 are used to grade the validity of the means to quantify this value. (See the “Service Connection Diagram” worksheet)

either of two conditions can be met (See the “Service Connection Diagram” worksheet)

- a) The customer water meter is located outside of the curbstop or boundary separating utility/customer responsibility for service connection piping. Clear policy exists to define the location of curbstops and meters, which are impacted upon installation, relocation, and well maintained electronic records exist with periodic field checks to confirm locations of service lines, curbstops and customer meter pits. An accurate number of customer properties from the customer billing system allows for reliable averaging of this length.

<table>
<thead>
<tr>
<th>Conditions between 6 and 8</th>
</tr>
</thead>
</table>

- b) Customer water meters are located inside customer buildings, or the properties are unverified. In either case the distance is highly reliable since data is drawn from a Geographic Information System (GIS) and confirmed by routine field checks.

| Conditions between 8 and 10 |

Grading Matrix

Improvements to attain higher data grading for “Average Length of Customer Service Line” component: Research and collect paper records of service line installations. Inspect several sites in the field using pipe locators to locate curbstops. Obtain the length of this small sample of connections in this manner.

- to qualify for 2: Analyze available records and prepare map of system. Conduct field survey of pipe and road locations. Perform on-site measurements from fire hydrants, buildings and topographic maps. Clearly defined policy delineating responsibility for service connection piping. Insure accuracy. Review of field derived data sheets to find pump pressure/flow characteristics.

| Conditions between 6 and 8 |

- to qualify for 4: Establish coherent procedures to ensure policy for curbstops, meter installation and documentation is followed. Gain consensus within the water utility for the establishment of a computerized information management system to store service connection data.

| Conditions between 2 and 4 |

- to qualify for 6: Implement an electronic means of data collection, with typically via a customer information system or customer billing system. Standardize the process to conduct field checks of limited number of locations.

- to qualify for 8: Link customer information management system and Geographic Information System (GIS), standardize process for field verification of data.

- to maintain 10: Continue with data collection and random field validation to improve knowledge of system.

Average operating pressure: Limited telemetry monitoring and automatic pressure data collection. Inspect several sites for pressure data, if recorded on handwritten logsheets. Pressure data is gathered at individual sites only when low pressure complaints arise. Average pressure is determined by averaging relatively crude data, and is affected by significant variation in ground elevations, system head loss and gaps in pressure control in the distribution system.

- to qualify for 2: Establish pressure control at system boundaries. Utilize pump pressure and flow data at fire hydrants and buildings when low pressure complaints arise, and during fire flow tests and system flushing. Average pressure is determined by using this mix of data.

| Conditions between 4 and 6 |

- to qualify for 4: Establish best practices for maintaining pressure control. Separate different pressure zones; moderate pressure variation across the system, occasional open boundary valves are discovered that breach pressure zones. Basic telemetry monitoring of the distribution system logs pressure data electronically. Pressure data gathered by gauges or data loggers at fire hydrants or buildings when low pressure complaints arise, and during fire flow tests and system flushing. Average pressure is determined by using this mix of data.

| Conditions between 2 and 4 |

- to qualify for 6: Well-managed, discrete pressure zones exist with generally predictable pressure fluctuations. A current full-scale SCADA System exists to monitor the water distribution system and collect data, including real time pressure measurements at representative sites across the system. The average system pressure is determined from reliable SCADA System data.

| Conditions between 6 and 8 |

- to qualify for 8: Well-managed pressure distribution systems. SCADA System and hydraulic model exist to give very precise pressure data across the water distribution system. Average system pressure is reliably calculated from extensive, reliable, and cross-checked data.

Improvements to attain higher data grading for “Average Operating Pressure” component: Empty pressure gauging and data logging equipment to obtain pressure measurements from fire hydrants, buildings and topographic maps of service area in order to confirm ground elevations. Research pump: data sheets to find pump pressure/flow characteristics.

- to qualify for 2: Establish pressure control at system boundaries. Utilize pump pressure and flow data at fire hydrants and buildings when low pressure complaints arise, and during fire flow tests and system flushing. Average pressure is determined by using this mix of data.

| Conditions between 6 and 8 |

- to qualify for 4: Establish best practices for maintaining pressure control. Separate different pressure zones; moderate pressure variation across the system, occasional open boundary valves are discovered that breach pressure zones. Basic telemetry monitoring of the distribution system logs pressure data electronically. Pressure data gathered by gauges or data loggers at fire hydrants or buildings when low pressure complaints arise, and during fire flow tests and system flushing. Average pressure is determined by using this mix of data.

| Conditions between 4 and 6 |

- to qualify for 6: Well-managed, discrete pressure zones exist with generally predictable pressure fluctuations. A current full-scale SCADA System exists to monitor the water distribution system and collect data, including real time pressure measurements at representative sites across the system. The average system pressure is determined from reliable SCADA System data.

| Conditions between 2 and 4 |

- to qualify for 8: Well-managed pressure distribution systems. SCADA System and hydraulic model exist to give very precise pressure data across the water distribution system. Average system pressure is reliably calculated from extensive, reliable, and cross-checked data.

Grading: Vague policy exists to define the delineation of water utility ownership and customer ownership of the service connection piping. Curbstops are perceived as the breakpoint but these have not been well defined or documented. Most are buried or obscured. Their location varies widely from site to site, and estimating this distance is arbitrary due to the unknown location of many curbstops.

- to qualify for 2: Award 2: Either of two conditions can be met (See the “Service Connection Diagram” worksheet)

| Conditions between 6 and 8 |

- a) The customer water meter is located outside of the curbstop or boundary separating utility/customer responsibility for service connection piping. Clear policy exists to define the location of curbstops and meters, which are impacted upon installation, relocation, and well maintained electronic records exist with periodic field checks to confirm locations of service lines, curbstops and customer meter pits. An accurate number of customer properties from the customer billing system allows for reliable averaging of this length.

| Conditions between 8 and 10 |

- b) Customer water meters are located inside customer buildings, or the properties are unverified. In either case the distance is highly reliable since data is drawn from a Geographic Information System (GIS) and confirmed by routine field checks.

<p>| Conditions between 8 and 10 |</p>
<table>
<thead>
<tr>
<th>Grading</th>
<th>n/a</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total annual cost of operating water system:</td>
<td></td>
<td>Incomplete paper records and risk of documentation on any operating functions making calculation of water system operating costs a pure guesstimate</td>
<td>Reasonably maintained, but incomplete, paper or electronic accounting provides data to estimate the major portion of water system operating costs.</td>
<td>Electronic, industry-standard cost accounting system in place, with all pertinent water system operating costs tracked. Data audited periodically by utility personnel, and periodically by third-party CPA.</td>
<td>Reliably electronic, industry-standard cost accounting system in place, with all pertinent water system operating costs tracked. Data audited at least annually by utility personnel, and periodically by third-party CPA.</td>
<td>Reliably electronic, industry-standard cost accounting system in place, with all pertinent water system operating costs tracked. Data audited annually by utility personnel, and periodically by third-party CPA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvements to attain higher data grading for "Total Annual Cost of Operating the Water System" component:</td>
<td>to qualify for 2: Gather available records, institute new procedures to regularly collect and audit basic cost data and most important operations functions.</td>
<td>Implement an electronic cost accounting system structured according to accounting standards for water utilities.</td>
<td>Establish processes for periodic internal audit of water system operating costs; identify cost data gaps and institute procedures for tracking these outstanding costs.</td>
<td>Standardize the processes to conduct routine financial audit on an annual basis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to maintain 10: Maintain program, stay abreast of expenses subject to erratic cost changes and budget/track costs proactively.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer retail unit cost (related to Apparent Losses)</td>
<td>Antiquated, cumbersome water rate structure is in use, with periodic historic amendments that were poorly documented and implemented, resulting in classes of customers being billed inconsistent charges.</td>
<td>Dated, cumbersome water rate structure, not always employed consistently in actual billing operations. The actual composite billing rate is known to differ from the published water rate structure, and a reasonably accurate estimate of the degree of error is determined, allowing a composite billing rate to be quantified.</td>
<td>Straight-forward water rate structure in use, but not updated in several years. Billing operations rely on the rate structure. The composite billing rate is derived from a single customer class such as residential customer accounts, neglecting the effect of different rates from varying billing classes to be quantified.</td>
<td></td>
<td>Effective water rate structure is in force and is applied reliably in billing operations. Composite customer rate is determined using a weighted average composite consumption rate, including residential, commercial, industrial, and any other customer classes within the water rate structure.</td>
<td>Effective water rate structure is in force and is applied reliably in billing operations. Composite customer rate is determined using a weighted average composite consumption rate, including residential, commercial, industrial, and any other customer classes within the water rate structure.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvements to attain higher data grading for "Customer Retail Unit Cost" component:</td>
<td>to qualify for 2: Review the water rate structure and update/formalize as needed. Assess billing operations to ensure that actual billing operations incorporate the established water rate structure.</td>
<td>to qualify for 4: Evaluate volume of water used in each usage block by residential users. Multiply volumes by full rate structure.</td>
<td>to qualify for 6: Evaluate volume of water used in each usage block by all classifications of users. Multiply volumes by full rate structure.</td>
<td>to qualify for 8: Conduct a periodic third-party audit of water in each usage block by all classifications of users. Multiply volumes by full rate structure.</td>
<td>to qualify for 10: Keep water rate structure current and reliable. Update/formalize as needed. Assess billing operations to ensure that actual billing operations incorporate the established water rate structure.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable production cost (applied to Real Losses)</td>
<td>Note: If the water utility purchases/import its entire water supply, then enter the unit purchase cost of the bulk water supply in the Reporting Worksheet with a grading of 10.</td>
<td>Incomplete paper records and lack of documentation on primary operating functions make calculation of variable production costs a pure guesstimate.</td>
<td>Reasonably maintained, but incomplete, paper or electronic accounting provides data to roughly estimate the basic operations costs (pumping power costs and treatment costs) and calculate a unit variable production cost.</td>
<td>Electronic, industry-standard cost accounting system in place, with all pertinent water system operating costs tracked.</td>
<td>Reliably electronic, industry-standard cost accounting system in place, with all pertinent water system operating costs tracked. Data audited at least annually by utility personnel, and periodically by third-party CPA.</td>
<td>Either of two conditions can be met to obtain a grading of 10: 1) Third party CPA audit of all primary cost components on an annual basis. 2) Water supply is entirely purchased as bulk imported water, and unit purchase cost serves as the variable production cost.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvements to attain higher data grading for "Variable Production Cost" component:</td>
<td>to qualify for 2: Gather available records, institute new procedures to regularly collect and audit basic cost data and most important operations functions.</td>
<td>Implement an electronic cost accounting system structured according to accounting standards for water utilities.</td>
<td>Formulate process for regular internal audits of production costs. Assess whether additional costs (labor, residuals management, etc.) should be included to calculate a more accurate variable production cost.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to maintain 10: Maintain program, stay abreast of expenses subject to erratic cost changes and budget/track costs proactively.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Average Length of Customer Service Line

The three figures shown on this worksheet display the assignment of the Average Length of Customer Service Line, Lp, for the three most common piping configurations.

Figure 1 shows the configuration of the water meter outside of the customer building next to the curbstop valve. In this configuration Lp = 0 since the distance between the curbstop and the customer metering point is essentially zero.

Figure 2 shows the configuration of the customer water meter located inside the customer building, where Lp is the distance from the curbstop to the water meter.

Figure 3 shows the configuration of an unmetered customer building, where Lp is the distance from the curbstop to the first point of customer water consumption, or, more simply, the building line.

In any water system the Lp will vary notably in a community of different structures, therefore the average Lp value is used and this should be approximated or calculated if a sample of service line measurements has been gathered.
<table>
<thead>
<tr>
<th>Item Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent Losses</td>
<td>= unauthorized consumption + meter under-registration + data handling errors</td>
</tr>
<tr>
<td></td>
<td>Includes all types of inaccuracies associated with customer metering as well as data handling errors (meter reading and billing), plus unauthorized consumption (theft or illegal use).</td>
</tr>
<tr>
<td></td>
<td>NOTE: Over-registration of customer meters, leads to under-estimation of Real Losses. Under-registration of customer meters, leads to over-estimation of Real Losses.</td>
</tr>
<tr>
<td>AUTHORIZED CONSUMPTION</td>
<td>= billed metered + billed unmetered + unbilled metered + unbilled unmetered</td>
</tr>
<tr>
<td></td>
<td>The volume of metered and/or unmetered water taken by registered customers, the water supplier, for residential, commercial and industrial purposes. This does NOT include water sold to neighboring utilities (water exported).</td>
</tr>
<tr>
<td></td>
<td>Authorized consumption may include items such as fire fighting and training, flushing of mains and sewers, street cleaning, watering of municipal gardens, public fountains, frost protection, building water, etc. These may be billed or unmetered.</td>
</tr>
<tr>
<td>Average length of customer service line</td>
<td>This is entered for unmetered services and in cold or other areas where meters are installed inside homes and buildings. It is the length of customer service line either between the utility's service connection (often at the curbstop) and the meter, or to the building line (first point of customer consumption) if customers are unmetered.</td>
</tr>
<tr>
<td></td>
<td>Note that the length of service connection between the main and customer service line is owned by the utility and its length and potential leakage is accounted for in the UARL formula by the number of service connections.</td>
</tr>
<tr>
<td>Billed Authorized Consumption</td>
<td>All consumption that is billed and authorized by the utility. This may include both metered and unmetered consumption. See "Authorized Consumption" for more information.</td>
</tr>
<tr>
<td>Billed metered consumption</td>
<td>All metered consumption which is billed. This includes all groups of customers such as domestic, commercial, industrial or institutional. It does NOT include water sold to neighboring utilities (water exported) which is metered and billed. The metered consumption data can be taken directly from billing records for the water audit period.</td>
</tr>
<tr>
<td></td>
<td>The accuracy of yearly metered consumption data can be refined by including an adjustment to account for customer meter reading lagtime, however additional analysis is necessary to determine the adjustment value, which may or may not be significant.</td>
</tr>
<tr>
<td>Billed unmetered consumption</td>
<td>All billed consumption which is calculated based on estimates or norms but is not metered. This might be a very small component in fully metered systems (for example billing based on estimates for the period a customer meter is out of order) but can be the key consumption component in systems without universal metering. It does NOT include water sold to neighboring utilities (water exported) which is unmetered but billed.</td>
</tr>
<tr>
<td>Connection density</td>
<td>= number of connections / length of mains</td>
</tr>
</tbody>
</table>
Definitions

<table>
<thead>
<tr>
<th>Item Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer metering inaccuracies</td>
<td>Apparent water losses caused by the collective under-registration of customer water meters. Many customer water meters will wear as large cumulative volumes of water are passed through them over time. This causes the meters to under-register. The auditor has two options for entering data for this component of the audit. The auditor can enter a percentage under-registration (typically an estimated value), this will apply the selected percentage to the two categories of metered consumption to determine the volume of water not recorded due to customer meter inaccuracy. Alternatively, if the auditor has substantial data from meter testing to arrive at their own volumes of such losses, this volume may be entered directly. Note that a value of zero will be accepted but an alert will appear asking if the customer population is unmetered. Since all metered systems have some degree of inaccuracy, then a positive value should be entered. A value of zero in this component is valid only if the water utility does not meter its customer population.</td>
</tr>
<tr>
<td>Customer retail unit cost</td>
<td>The Customer Retail Unit Cost represents the charge that customers pay for water service. This unit cost is applied to the components of apparent loss, since these losses represent water reaching customers but not (fully) paid for. It is important to compile these costs per the same unit cost basis as the volume measure included in the water audit. For example, if all water volumes are measured in million gallons, then the unit cost should be dollars per million gallon ($/mil gal). The software allows the user to select the units that are charged to customers (either $/1,000 gallons, $/hundred cubic feet or $/1,000 litres) and automatically converts these units to the units that appear in the “WATER SUPPLIED” box. Since most water utilities have a rate structure that includes a variety of different costs based upon class of customer, a weighted average of individual costs and number of customer accounts in each class can be calculated to determine a single composite cost that should be entered into this cell. Finally, the weighted average cost should also include additional charges for sewer, stormwater or bio charges are based upon the volume of potable water consumed.</td>
</tr>
<tr>
<td>Infrastructure Leakage Index (ILI)</td>
<td>The Infrastructure Leakage Index (ILI) is an estimate or measure of the degree of any inaccuracy that exists in the master meters measuring the Volume from own sources. Please also indicate if this adjustment is because the master meters under-registered (did not capture all the flow) or over-registered (overstated the actual flow). All systems encounter some degree of error in their Master meter data. Please enter a positive value.</td>
</tr>
<tr>
<td>Length of mains</td>
<td>The Length of Mains, kilometres = (total pipeline length, metres) + [((average fire hydrant lead length, metres) x (number of fire hydrants)) / 1,000 metres/kilometre]</td>
</tr>
<tr>
<td>Master meter error adjustment</td>
<td>An estimate or measure of the degree of any inaccuracy that exists in the master meters. Please also indicate if this adjustment is because the master meters under-registered (did not capture all the flow) or over-registered (overstated the actual flow). All systems encounter some degree of error in their Master meter data. Please enter a positive value.</td>
</tr>
<tr>
<td>NON-REVENUE WATER</td>
<td>NON-REVENUE WATER = Apparent Losses + Real Losses + Unbilled Metered + Unbilled Unmetered water which does not provide any revenue to the utility</td>
</tr>
<tr>
<td>Number of active AND inactive service connections</td>
<td>The Number of active INACTIVE service connections is the actual number of distinct piping connections including fire connections whether active or inactive. This may differ substantially from the number of Customers (or number of accounts)</td>
</tr>
<tr>
<td>Real Losses</td>
<td>Physical water losses from the pressurized system and the utility’s storage tanks, up to the point of customer consumption. In metered systems this is the customer meter, in unmetered situations this is the first point of consumption (stop tap/tap) within the property. The annual volume lost through all types of leaks, breaks and overflows depends on frequencies, flow rates, and average duration of individual leaks, breaks and overflows.</td>
</tr>
<tr>
<td>Revenue Water</td>
<td>Meter which is charged to customers to provide revenue to the utility.</td>
</tr>
<tr>
<td>Systematic data handling errors</td>
<td>Systematic data handling errors affect the meter reading and billing system.</td>
</tr>
<tr>
<td>Total annual cost of operating the water system</td>
<td>These costs include those for operations, maintenance and any annually incurred costs for long-term upkeep of the system, such as repayment of capital bonds for infrastructure expansion or improvement. Typical costs include employee salaries and benefits, materials, equipment, insurance, fees, administrative costs and all other costs that exist to sustain the drinking water supply. These costs should not include any costs to operate wastewater, biosolids or other systems outside of drinking water.</td>
</tr>
</tbody>
</table>

AWWA Water Loss Control Committee

Definitions
<table>
<thead>
<tr>
<th>Item Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unauthorized consumption</td>
<td>Includes water illegally withdrawn from hydrants, illegal connections, bypasses to consumption meter or meter reading equipment tampering. While this component has a direct impact on revenue, in most water utilities the volume is low and it is recommended that the auditor apply a default value of 0.25% of the volume from own sources. If the auditor has well validated data that indicates the volume from unauthorized consumption is substantially higher or lower than that generated by the default value then this value can be entered. However, for most water utilities it is recommended that the auditor apply the default value. Note that a value of zero will not be accepted since all water utilities have some volume of unauthorized consumption occurring in their system.</td>
</tr>
<tr>
<td>Unavoidable Annual Real Losses (UARL)</td>
<td>The UARL is a theoretical reference value representing the technical low limit of leakage that could be achieved if all of today's best technology could be successfully applied. It is a key variable in the calculation of the Infrastructure Leakage Index (ILI). It is not necessary that water utilities set this level as the target level of leakage, unless water is unusually expensive, scarce or both. NOTE: The UARL calculation has not yet been fully proven as effective for very small, or low pressure water distribution systems. If, in gallons per day: ((Lm \times 32) + Nc < 3000) or (P < 35 \text{ psi}), then the calculated UARL value may not be valid. The software does not display a value of UARL or ILI if either of these conditions is true.</td>
</tr>
<tr>
<td>Unbilled Authorized Consumption</td>
<td>All consumption that is unbilled, but still authorized by the utility. See "Authorized Consumption" for more information.</td>
</tr>
<tr>
<td>Unbilled metered consumption</td>
<td>Metered consumption which is for any reason unbilled. This might for example include metered consumption of the utility itself or water provided to institutions free of charge. It does NOT include water sold to neighboring utilities (water exported) which is metered but unbilled.</td>
</tr>
<tr>
<td>Unbilled unmetered consumption</td>
<td>Any kind of Authorized Consumption which is neither billed nor metered. This component typically includes items such as fire fighting, flushing of mains and sewers, street cleaning, frost protection, etc. In most water utilities it is a small component which is very often substantially overestimated. It does NOT include water sold to neighboring utilities (water exported) which is unmetered and unbilled – an unlikely case. This component has many sub-components of water use which are often tedious to identify and quantify. Because of this, and the fact that it is usually a small portion of the water supplied, it is recommended that the auditor apply the default value of 1.25% of the volume from own sources. Select the default percentage to enter this value. If the water utility already has well validated data that gives a value substantially higher or lower than the default volume, then the auditor should enter their own volume. However the default approach is recommended for most water utilities. Note that a value of zero is not permitted, since all water utilities have some volume of water in this component occurring in their system.</td>
</tr>
</tbody>
</table>

Units and Conversions

<table>
<thead>
<tr>
<th>Enter Units:</th>
<th>(\text{1 Million Gallons (US)})</th>
<th>Convert From...</th>
<th>Converts to...</th>
<th>(\text{0.868883 Acre-feet})</th>
</tr>
</thead>
</table>

AWWA Water Loss Control Committee Definitions 21
Use of Option Buttons

<table>
<thead>
<tr>
<th>Item Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable production cost (applied to Real Losses)</td>
<td>The cost to produce and supply the next unit of water. (E.g., $/million gallons) This cost is determined by calculating the summed unit costs for ground and surface water treatment and all power used for pumping from the source to the customer. It should also include the unit cost of bulk water purchased as an import if applicable.</td>
</tr>
<tr>
<td>Volume from own sources</td>
<td>The volume of treated water input to system from own production facilities</td>
</tr>
<tr>
<td>Water exported</td>
<td>Bulk water sold and conveyed out of the water distribution system. Typically this is water sold to a neighboring water utility. Be sure to account for any export meter inaccuracy in reporting this volume</td>
</tr>
<tr>
<td>Water imported</td>
<td>Bulk water purchased to become part of the water supplied. Typically this is water purchased from a neighboring water utility or regional water authority. Be sure to account for any import meter inaccuracy in reporting this volume</td>
</tr>
<tr>
<td>WATER LOSSES</td>
<td>The difference between System Input and Authorized Consumption. Water losses can be considered as a total volume for the whole system, or for partial systems such as transmission or distribution systems, or individual zones. Water Losses consist of Real losses and Apparent Losses.</td>
</tr>
</tbody>
</table>

NOTE: For unbilled unmetered consumption and unauthorized consumption, a recommended default value can be applied by selecting the Percent option. The default values are based on fixed percentages of water supplied and are recommended for use in this audit unless the auditor has well validated data for their system. Default values are shown by purple cells, as shown in the example above.

If a default value is selected, the user does not need to grade the item; a grading value of 3 is automatically applied (however, this grade will not be displayed).
Water Loss Control Planning Guide

<table>
<thead>
<tr>
<th>Functional Focus Area</th>
<th>Water Audit Data Validity Level / Score</th>
<th>Level I (0-25)</th>
<th>Level II (26-50)</th>
<th>Level III (51-70)</th>
<th>Level IV (71-90)</th>
<th>Level V (91-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Data Collection</td>
<td></td>
<td>Launch auditing and loss control team; address production metering deficiencies</td>
<td>Analyze business process for customer metering and billing functions and water supply operations. Identify data gaps.</td>
<td>Establish/revise policies and procedures for data collection</td>
<td>Refine data collection practices and establish as routine business process</td>
<td>Annual water audit is a reliable gauge of year-to-year water efficiency standing</td>
</tr>
<tr>
<td>Short-term loss control</td>
<td></td>
<td>Research information on leak detection programs. Begin flowcharting analysis of customer billing system</td>
<td>Conduct loss assessment investigations on a sample portion of the system: customer meter testing, leak survey, unauthorized consumption, etc.</td>
<td>Establish ongoing mechanisms for customer meter accuracy testing, active leakage control and infrastructure monitoring</td>
<td>Refine, enhance or expand ongoing programs based upon economic justification</td>
<td>Stay abreast of improvements in metering, meter reading, billing, leakage management and infrastructure rehabilitation</td>
</tr>
<tr>
<td>Long-term loss control</td>
<td></td>
<td>Begin to assess long-term needs requiring large expenditure: customer meter replacement, water main replacement program, new customer billing system or Automatic Meter Reading (AMR) system.</td>
<td>Begin to assemble economic business case for long-term needs based upon improved data becoming available through the water audit process.</td>
<td>Conduct detailed planning, budgeting and launch of comprehensive improvements for metering, billing or infrastructure management</td>
<td>Continue incremental improvements in short-term and long-term loss control interventions</td>
<td></td>
</tr>
<tr>
<td>Target-setting</td>
<td></td>
<td></td>
<td>Establish long-term apparent and real loss reduction goals (+10 year horizon)</td>
<td>Establish mid-range (5 year horizon) apparent and real loss reduction goals</td>
<td>Evaluate and refine loss control goals on a yearly basis</td>
<td></td>
</tr>
<tr>
<td>Benchmarking</td>
<td></td>
<td></td>
<td>Preliminary Comparisons - can begin to rely upon the Infrastructure Leakage Index (ILI) for performance comparisons for real losses (see below table)</td>
<td>Performance Benchmarking - ILI is meaningful in comparing real loss standing</td>
<td>Identify Best Practices/ Best in class - the ILI is very reliable as a real loss performance indicator for best in class service</td>
<td></td>
</tr>
</tbody>
</table>

For validity scores of 50 or below, the shaded blocks should not be focus areas until better data validity is achieved.
Once data has been entered into the Reporting Worksheet, the performance indicators are automatically calculated. How does a water utility operator know how well his or her system is performing? The AWWA Water Loss Control Committee provided the following table to assist water utilities in gauging an approximate Infrastructure Leakage Index (ILI) that is appropriate for their water system and local conditions. The lower the amount of leakage and real losses that exist in the system, the lower the ILI value will be.

Note: this table offers an approximate guideline for leakage reduction target-setting. The best means of setting such targets include performing an economic assessment of various loss control methods. However, this table is useful if such an assessment is not possible.

General Guidelines for Setting a Target ILI
(without doing a full economic analysis of leakage control options)

<table>
<thead>
<tr>
<th>Target ILI Range</th>
<th>Financial Considerations</th>
<th>Operational Considerations</th>
<th>Water Resources Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 - 3.0</td>
<td>Water resources are costly to develop or purchase; ability to increase revenues via water rates is greatly limited because of regulation or low ratepayer affordability.</td>
<td>Operating with system leakage above this level would require expansion of existing infrastructure and/or additional water resources to meet the demand.</td>
<td>Available resources are greatly limited and are very difficult and/or environmentally unsound to develop.</td>
</tr>
<tr>
<td>>3.0 - 5.0</td>
<td>Water resources can be developed or purchased at reasonable expense; periodic water rate increases can be feasibly imposed and are tolerated by the customer population.</td>
<td>Existing water supply infrastructure capability is sufficient to meet long-term demand as long as reasonable leakage management controls are in place.</td>
<td>Water resources are believed to be sufficient to meet long-term needs, but demand management interventions (leakage management, water conservation) are included in the long-term planning.</td>
</tr>
<tr>
<td>>5.0 - 8.0</td>
<td>Cost to purchase or obtain/treat water is low, as are rates charged to customers.</td>
<td>Superior reliability, capacity and integrity of the water supply infrastructure make it relatively immune to supply shortages.</td>
<td>Water resources are plentiful, reliable, and easily extracted.</td>
</tr>
<tr>
<td>Greater than 8.0</td>
<td>Although operational and financial considerations may allow a long-term ILI greater than 8.0, such a level of leakage is not an effective utilization of water as a resource. Setting a target level greater than 8.0 - other than as an incremental goal to a smaller long-term target - is discouraged.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 1.0</td>
<td>If the calculated Infrastructure Leakage Index (ILI) value for your system is 1.0 or less, two possibilities exist. a) you are maintaining your leakage at low levels in a class with the top worldwide performers in leakage control. b) A portion of your data may be flawed, causing your losses to be greatly understated. This is likely if you calculate a low ILI value but do not employ extensive leakage control practices in your operations. In such cases it is beneficial to validate the data by performing field measurements to confirm the accuracy of production and customer meters, or to identify any other potential sources of error in the data.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AWWA Water Loss Control Committee

Loss Control Planning 24
Water Audit Report for: Philadelphia Water Department

Reporting Year: 2008 7/2007 - 6/2008

Please enter data in the white cells below. Where available, metered values should be used; if metered values are unavailable please estimate a value. Indicate your confidence in the accuracy of the input data by grading each component (1-10) using the drop-down list to the left of the input cell. Hover the mouse over the cell to obtain a description of the grades.

All volumes to be entered as: MILLION GALLONS (US) PER YEAR

WATER SUPPLIED

<table>
<thead>
<tr>
<th>Volume from own sources</th>
<th>74,176,700 Million gallons (US/yr) (MG/Yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master meter error adjustment (enter positive value)</td>
<td>2,779,300 over-registered</td>
</tr>
<tr>
<td>Water imported</td>
<td>n/a</td>
</tr>
<tr>
<td>Water exported</td>
<td>7,100,400</td>
</tr>
<tr>
<td>WATER SUPPLIED:</td>
<td>84,657,200</td>
</tr>
</tbody>
</table>

AUTHORIZED CONSUMPTION

Billed metered	57,242,400
Billed unmetered	n/a
Unbilled metered	744,200
Unbilled unmetered	n/a
AUTHORIZED CONSUMPTION:	58,006,600

WATER LOSSES (Water Supplied - Authorized Consumption)

Apparent Losses	6,650,600
Unauthorized consumption	2,086,300
Customer metering inaccuracies	190,300
Systematic data handling errors	4,676,400
Apparent Losses	6,953,000
WATER LOSSES:	26,650,600

NON-REVENUE WATER

| NON-REVENUE WATER: | 27,414,800 |

SYSTEM DATA

Length of mains	3,137.0 miles
Number of active AND inactive service connections	547,932
Average length of customer service line	175 ft
Average operating pressure	55.0 psi

COST DATA

Total annual cost of operating water system	$219,182,339
Customer retail unit cost (applied to Apparent Losses)	$215.50
Variable production cost (applied to Real Losses)	$4.97

PERFORMANCE INDICATORS

Financial Indicators

- Non-revenue water as percent by volume of Water Supplied: 32.4%
- Non-revenue water as percent by cost of operating system: 17.8%
- Annual cost of Apparent Losses: $34,556,410
- Annual cost of Real Losses: $4,244,833

Operational Efficiency Indicators

- Apparent Losses per service connection per day: 34.77 gallons/connection/day
- Real Losses per service connection per day*: 98.47 gallons/connection/day
- Real Losses per length of main per day*: N/A
- Real Losses per service connection per day per psi pressure: 1.79 gallons/connection/day/psi
- Unavoidable Annual Real Losses (UARL): 2,178.15 million gallons/year
- From Above, Real Losses = Current Annual Real Losses (CARL): 19,697.60 million gallons/year
- Infrastructure Leakage Index (ILI) [CARL/UARL]: 9.24

* only the most applicable of these two indicators will be calculated

WATER AUDIT DATA VALIDITY SCORE:

*** YOUR SCORE IS: 82 out of 100 ***

A weighted scale for the components of consumption and water loss is included in the calculation of the Water Audit Data Validity Score.

PRIORITY AREAS FOR ATTENTION:

Based on the information provided, audit accuracy can be improved by addressing the following components:

1. Volume from own sources
2. Billed metered
3. Systematic data handling errors

For more information, click here to see the Grading Matrix worksheet.
Water Audit Report for: Regional Municipality of Peel
Reporting Year: 2008 1/2008 - 12/2008

All volumes to be entered as: MEGALITRES (THOUSAND CUBIC METRES) PER YEAR

WATER SUPPLIED
- **Volume from own sources:** 7,213,977.000 ML/Yr
- **Master meter error adjustment:** +4.000 ML/Yr
- **Water imported:** n/a
- **Water exported:** 26,457.500 ML/Yr

WATER SUPPLIED:
- **187,519.500 ML/Yr**

AUTHORIZED CONSUMPTION
- **Billed metered:** 163,665.000 ML/Yr
- **Billed unmetered:** 433.900 ML/Yr
- **Unbilled metered:** 1,768.400 ML/Yr
- **Unbilled unmetered:** 230.100 ML/Yr

AUTHORIZED CONSUMPTION:
- **166,097.400 ML/Yr**

WATER LOSSES (Water Supplied - Authorized Consumption)
- **Apparent Losses**
 - **Unauthorized consumption:** 886.800 ML/Yr
 - **Customer metering inaccuracies:** 2,851.000 ML/Yr
- **Systematic data handling errors:** 0.000 ML/Yr

Apparent Losses:
- **3,737.800 ML/Yr**

Real Losses (Current Annual Real Losses or CARL)
- **Real Losses = Water Losses - Apparent Losses:** 17,684.300 ML/Yr

Real Losses:
- **17,684.300 ML/Yr**

NON-REVENUE WATER
- **NON-REVENUE WATER:**
 - **Total Water Loss + Unbilled Metered + Unbilled Unmetered:** 23,420.600 ML/Yr

SYSTEM DATA
- **Length of mains:** 4,161.0 km
- **Number of active AND inactive service connections:** 287,905
- **Average length of customer service line:** 26.0 m
- **Average operating pressure:** 58.4 m

COST DATA
- **Total annual cost of operating water system:** $100,000,000 /Year
- **Customer retail unit cost (applied to Apparent Losses):** $0.64 /1000 litres
- **Variable production cost (applied to Real Losses):** $642.00 /Megalitre

PERFORMANCE INDICATORS
Financial Indicators
- **Non-revenue water as percent by volume of Water Supplied:** 12.5%
- **Non-revenue water as percent by cost of operating system:** 15.2%
- **Annual cost of Apparent Losses:** $2,399,668
- **Annual cost of Real Losses:** $11,353,321

Operational Efficiency Indicators

WATER AUDIT DATA VALIDITY SCORE:

*** YOUR SCORE IS: 66 out of 100 ***

A weighted scale for the components of consumption and water loss is included in the calculation of the Water Audit Data Validity Score.

PRIORITY AREAS FOR ATTENTION:
Based on the information provided, audit accuracy can be improved by addressing the following components:

1. Volume from own sources
2. Billed unmetered
3. Total annual cost of operating water system
This software is intended to serve as a basic tool to compile a preliminary, or “top-down”, water audit. It is recommended that users also refer to the 3rd Edition AWWA M36 Publication, Water Audits and Loss Control Programs, for detailed guidance on compiling a comprehensive, or “bottom-up”, water audit using the same water audit methodology.

Developed By:
- Andrew Chastain-Howley, Miya Water
- David Goff, P.E. - Goff Water Audits & Engineering
- George Kunkel, P.E. - Philadelphia Water Department
- Alain Lalonde, Veritec Consulting
- David Sayers, Delaware River Basin Commission

References:
- Service Connection Diagrams courtesy of Ronnie McKenzie, WRP Pty Ltd.
This spreadsheet-based GPCD calculator is designed to help quantify and track water uses associated with water distribution systems. The spreadsheet contains several separate worksheets. Sheets can be accessed using the tabs towards the bottom of the screen, or by clicking the buttons on the left below. Descriptions of each sheet are also given below.

It should be noted that all the recorded data should be from actual metered results and should not include any estimates.

Please begin by providing the following information, then proceed through each sheet:

NAME OF CITY OR UTILITY: City of Las Cruces Utilities

REPORTING YEARS:
Enter the most recent reporting year: 2010
Data can be entered back to: 2004

NAME OF CONTACT PERSON: Leeann DeMouche
E-MAIL: ldemouche@las-cruces.org
TELEPHONE: 575-528-3549

SELECT THE REPORTING UNITS FOR VOLUME DATA: Gallons (US)

Instructions & Utility

This sheet

- Census data and the portal to get the data from the Census website
- Single-Family residential gallons and population
- Multi-Family residential gallons and population
- Other data including Commercial, Industrial and Institutional [1.3] and Other metered [1.4] categories
- Data related to water reuse projects
- Total Production and Diverted Water
- The calculated data graphical review of most common performance indicators
- The calculated data graphical review of annual performance indicators
- The calculated data graphical review of monthly performance indicators
- Use this sheet to understand terms used in the audit process

All parties reserve the right to validate the data recorded in this document. This does not bind the OSE or the Utility to the results. It is a tool used for planning purposes.

If you have questions or comments regarding the software please contact us at: watern@state.nm.us
<table>
<thead>
<tr>
<th>US Census Table</th>
<th>Description</th>
<th>CENSUS YEAR</th>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P37</td>
<td>Group Quarters Population</td>
<td>2000</td>
<td>Total</td>
</tr>
<tr>
<td>H3</td>
<td>Occupancy Status</td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>from H3</td>
<td>Occupied</td>
<td></td>
<td>29,184</td>
</tr>
<tr>
<td>from H3</td>
<td>Vacant</td>
<td></td>
<td>2,498</td>
</tr>
<tr>
<td>H12</td>
<td>Ave. Household Size of Occupied Housing Units</td>
<td>Total</td>
<td>2.31</td>
</tr>
</tbody>
</table>

Formula: Household Size = Total Population / Total Number of Housing Units

Vacancy Rate % 7.9%
TABLE 3.1

TABLE 3.1

SFR BILLED WATER CONSUMPTION (Gallons (US))

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>173,522,000</td>
<td>145,393,000</td>
<td>176,364,000</td>
<td>256,596,000</td>
<td>292,970,000</td>
<td>383,372,000</td>
<td>393,247,000</td>
<td>323,871,000</td>
<td>317,424,000</td>
<td>275,386,000</td>
<td>261,691,000</td>
<td>166,923,000</td>
<td>3,166,759,000</td>
</tr>
<tr>
<td>2009</td>
<td>178,196,000</td>
<td>162,846,000</td>
<td>214,006,000</td>
<td>242,157,000</td>
<td>337,338,000</td>
<td>320,328,000</td>
<td>423,449,000</td>
<td>390,811,000</td>
<td>340,889,000</td>
<td>282,756,000</td>
<td>215,277,000</td>
<td>166,338,000</td>
<td>3,274,391,000</td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3.2

NUMBER OF SFR CONNECTIONS (Monthly)

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3.3

INACTIVE (ZERO USE) SFR CONNECTIONS (Monthly)

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>2.50%</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>N/A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3.4

SFR POPULATION (Monthly)

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>63,444</td>
<td>63,375</td>
<td>63,700</td>
<td>63,820</td>
<td>63,875</td>
<td>63,733</td>
<td>63,837</td>
<td>64,071</td>
<td>65,189</td>
<td>64,642</td>
<td>64,947</td>
<td>65,400</td>
</tr>
<tr>
<td>2008</td>
<td>No Data</td>
</tr>
<tr>
<td>2007</td>
<td>No Data</td>
</tr>
<tr>
<td>2006</td>
<td>No Data</td>
</tr>
<tr>
<td>2005</td>
<td>No Data</td>
</tr>
<tr>
<td>2004</td>
<td>No Data</td>
</tr>
</tbody>
</table>

TABLE 3.5

SFR GPCD CALCULATION (Monthly)

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>85.46</td>
<td>79.23</td>
<td>86.79</td>
<td>129.79</td>
<td>144.06</td>
<td>194.00</td>
<td>192.21</td>
<td>158.26</td>
<td>161.12</td>
<td>134.93</td>
<td>132.93</td>
<td>81.39</td>
</tr>
<tr>
<td>2009</td>
<td>90.60</td>
<td>91.77</td>
<td>108.37</td>
<td>126.48</td>
<td>170.36</td>
<td>167.54</td>
<td>215.98</td>
<td>196.76</td>
<td>174.31</td>
<td>141.10</td>
<td>110.49</td>
<td>82.05</td>
</tr>
<tr>
<td>2008</td>
<td>No Data</td>
</tr>
<tr>
<td>2007</td>
<td>No Data</td>
</tr>
<tr>
<td>2006</td>
<td>No Data</td>
</tr>
<tr>
<td>2005</td>
<td>No Data</td>
</tr>
<tr>
<td>2004</td>
<td>No Data</td>
</tr>
</tbody>
</table>
TABLE 4.1
MONTHLY DATA

MFR BILLED WATER CONSUMPTION (Monthly) (Gallons (US))

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>43,117,000</td>
<td>39,380,000</td>
<td>52,170,000</td>
<td>51,844,000</td>
<td>52,578,000</td>
<td>71,177,000</td>
<td>65,340,000</td>
<td>60,977,000</td>
<td>62,299,000</td>
<td>50,696,000</td>
<td>45,942,000</td>
<td>36,910,000</td>
</tr>
<tr>
<td>2009</td>
<td>43,292,000</td>
<td>37,618,000</td>
<td>47,383,000</td>
<td>50,745,000</td>
<td>61,438,000</td>
<td>56,852,000</td>
<td>64,320,000</td>
<td>65,230,000</td>
<td>59,180,000</td>
<td>43,309,000</td>
<td>43,681,000</td>
<td>642,898,000</td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TABLE 4.2
NUMBER OF MFR UNITS (Monthly)

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>12,714</td>
<td>12,531</td>
<td>12,607</td>
<td>12,638</td>
<td>12,592</td>
<td>12,577</td>
<td>12,623</td>
<td>12,577</td>
<td>12,546</td>
<td>12,546</td>
<td>12,546</td>
<td>12,593</td>
</tr>
<tr>
<td>2009</td>
<td>12,500</td>
<td>12,291</td>
<td>12,322</td>
<td>12,352</td>
<td>12,337</td>
<td>12,307</td>
<td>12,322</td>
<td>12,337</td>
<td>12,382</td>
<td>12,352</td>
<td>12,322</td>
<td>12,345</td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TABLE 4.3
MFR POPULATION (Monthly)

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>27,076</td>
<td>26,652</td>
<td>26,829</td>
<td>26,900</td>
<td>26,794</td>
<td>26,864</td>
<td>26,864</td>
<td>26,788</td>
<td>26,868</td>
<td>26,868</td>
<td>26,868</td>
<td>26,868</td>
</tr>
<tr>
<td>2009</td>
<td>26,527</td>
<td>26,145</td>
<td>26,214</td>
<td>26,284</td>
<td>26,180</td>
<td>26,214</td>
<td>26,214</td>
<td>26,248</td>
<td>26,354</td>
<td>26,284</td>
<td>26,214</td>
<td>26,269</td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TABLE 4.4
MFR GPCD CALCULATION (Monthly)

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>51.37</td>
<td>52.77</td>
<td>52.73</td>
<td>62.30</td>
<td>63.30</td>
<td>68.67</td>
<td>78.66</td>
<td>73.22</td>
<td>77.61</td>
<td>61.28</td>
<td>57.38</td>
<td>44.61</td>
</tr>
<tr>
<td>2009</td>
<td>52.45</td>
<td>51.39</td>
<td>58.31</td>
<td>64.36</td>
<td>75.50</td>
<td>72.38</td>
<td>85.96</td>
<td>75.16</td>
<td>82.83</td>
<td>72.44</td>
<td>54.62</td>
<td>53.75</td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
</tr>
</tbody>
</table>
5. INDUSTRIAL, COMMERCIAL & INSTITUTIONAL (ICI) AND OTHER METERED

MONTHLY DATA

TABLE 5.1

ICI WATER CONSUMPTION (Gallons (US))

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>75,445,000</td>
<td>67,296,000</td>
<td>112,274,000</td>
<td>139,308,000</td>
<td>142,085,000</td>
<td>190,515,000</td>
<td>168,052,000</td>
<td>153,992,000</td>
<td>160,209,000</td>
<td>136,184,000</td>
<td>130,244,000</td>
<td>77,231,000</td>
</tr>
<tr>
<td>2009</td>
<td>83,072,000</td>
<td>79,145,000</td>
<td>100,230,000</td>
<td>122,576,000</td>
<td>154,487,000</td>
<td>161,937,000</td>
<td>192,286,000</td>
<td>189,977,000</td>
<td>159,950,000</td>
<td>140,267,000</td>
<td>115,895,000</td>
<td>82,556,000</td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TABLE 5.2

OTHER METERED (Gallons (US))

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>12,944,000</td>
<td>9,892,000</td>
<td>15,121,000</td>
<td>25,369,000</td>
<td>28,603,000</td>
<td>38,138,000</td>
<td>33,271,000</td>
<td>22,113,000</td>
<td>21,850,000</td>
<td>17,661,000</td>
<td>10,964,000</td>
<td>5,498,000</td>
</tr>
<tr>
<td>2009</td>
<td>18,265,000</td>
<td>22,699,000</td>
<td>26,300,000</td>
<td>37,224,000</td>
<td>41,860,000</td>
<td>38,848,000</td>
<td>34,386,000</td>
<td>35,352,000</td>
<td>27,176,000</td>
<td>27,668,000</td>
<td>25,581,000</td>
<td>12,460,000</td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
</tr>
</tbody>
</table>

ANNUAL DATA

TABLE 5.3

ICI ANNUAL CONSUMPTION

<table>
<thead>
<tr>
<th>Year</th>
<th>ICI GPCD</th>
<th>ICI ANNUAL CALCULATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>45.14 GPCD</td>
<td>1,552,835,000</td>
</tr>
<tr>
<td>2009</td>
<td>46.98 GPCD</td>
<td>1,579,346,000</td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TABLE 5.4

OTHER ANNUAL CONSUMPTION

<table>
<thead>
<tr>
<th>Year</th>
<th>OTHER METERED GPCD</th>
<th>OTHER ANNUAL CALCULATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>8.96 GPCD</td>
<td>239,422,000</td>
</tr>
<tr>
<td>2009</td>
<td>16.36 GPCD</td>
<td>346,274,000</td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

COMMENTS:

ICI = Commercial + Industrial + Golf Courses + Paz Park + Parks; Other = Well 27 & 18 + Bulk

DATA INPUT SHEET

1. Return to Instructions
2. Data Input Sheet
3. ANNUAL DATA
4. TABLE 5.1
5. TABLE 5.2
6. TABLE 5.3
7. TABLE 5.4
8. TABLE 5.5
9. TABLE 5.6
10. TABLE 5.7
11. TABLE 5.8
12. NMOSE GPCD Calculator v2.02
MONTHLY DATA

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,266,600</td>
<td>9,426,000</td>
<td>7,872,000</td>
<td>9,018,000</td>
<td>4,182,000</td>
</tr>
<tr>
<td>2009</td>
<td>N/A</td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
</tr>
</tbody>
</table>

COMMENTS:

Sonoma Ranch Golf course

ANNUAL DATA

TABLE 6.2

- 2010: N/A
- 2009: N/A
- 2008: N/A
- 2007: N/A
- 2006: N/A
- 2005: N/A
- 2004: N/A

TABLE 6.3

- 2010: N/A
- 2009: N/A
- 2008: N/A
- 2007: N/A
- 2006: N/A
- 2005: N/A
- 2004: N/A

Graph 6.1: Reuse Volume

- **Graph 6.2: Reuse GPCD**
7. TOTAL WATER DIVERTED AND SUPPLIED

MONTHLY DATA

TABLE 7.1

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>366,507,000</td>
<td>332,173,000</td>
<td>464,506,000</td>
<td>545,104,000</td>
<td>656,745,000</td>
<td>795,636,000</td>
<td>712,467,000</td>
<td>697,798,000</td>
<td>603,225,000</td>
<td>570,076,000</td>
<td>458,817,000</td>
<td>391,096,000</td>
</tr>
<tr>
<td>2009</td>
<td>388,825,700</td>
<td>377,955,000</td>
<td>497,349,800</td>
<td>566,996,000</td>
<td>692,027,000</td>
<td>726,460,000</td>
<td>751,481,000</td>
<td>592,860,000</td>
<td>453,180,000</td>
<td>460,340,000</td>
<td>317,585,200</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7.2

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>39,005,000</td>
<td>39,785,000</td>
<td>46,517,000</td>
<td>43,553,000</td>
<td>41,974,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 7.3

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>4,000</td>
<td>1,000</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 7.4

Formula = Total Water Diverted + Imported water - Exported Water

TABLE 7.5

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>125</td>
<td>126</td>
<td>159</td>
<td>193</td>
<td>225</td>
<td>281</td>
<td>244</td>
<td>239</td>
<td>213</td>
<td>195</td>
<td>182</td>
<td>134</td>
</tr>
<tr>
<td>2009</td>
<td>136</td>
<td>147</td>
<td>174</td>
<td>205</td>
<td>242</td>
<td>263</td>
<td>264</td>
<td>263</td>
<td>215</td>
<td>191</td>
<td>181</td>
<td>134</td>
</tr>
</tbody>
</table>

TABLE 7.6

TABLE 7.7

TABLE 7.8

TABLE 7.9

TABLE 7.10

TABLE 7.11

TABLE 7.12

TABLE 7.13

TABLE 7.14

Comments:

Total production from CLC wells, imported water from NMSU wells, exported water to Mesilla System Total GPCD (Monthly) (Gallons (US))

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>135</td>
<td>126</td>
<td>193</td>
<td>225</td>
<td>281</td>
<td>244</td>
<td>239</td>
<td>213</td>
<td>195</td>
<td>182</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td>2009</td>
<td>136</td>
<td>147</td>
<td>174</td>
<td>205</td>
<td>242</td>
<td>263</td>
<td>264</td>
<td>263</td>
<td>215</td>
<td>191</td>
<td>181</td>
<td>134</td>
</tr>
</tbody>
</table>

ANNUAL DATA

TOTAL WATER SUPPLY (Monthly) (Gallons (US))

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>366,507,000</td>
<td>332,173,000</td>
<td>464,506,000</td>
<td>545,104,000</td>
<td>656,745,000</td>
<td>795,636,000</td>
<td>712,467,000</td>
<td>697,798,000</td>
<td>603,225,000</td>
<td>570,076,000</td>
<td>458,817,000</td>
<td>391,096,000</td>
</tr>
<tr>
<td>2009</td>
<td>388,825,700</td>
<td>377,955,000</td>
<td>497,349,800</td>
<td>566,996,000</td>
<td>692,027,000</td>
<td>726,460,000</td>
<td>751,481,000</td>
<td>592,860,000</td>
<td>453,180,000</td>
<td>460,340,000</td>
<td>317,585,200</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL WATER DIVERTED (Monthly) (Gallons (US))

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>366,503,000</td>
<td>332,172,000</td>
<td>464,506,000</td>
<td>545,104,000</td>
<td>656,745,000</td>
<td>795,636,000</td>
<td>712,467,000</td>
<td>697,798,000</td>
<td>603,225,000</td>
<td>570,076,000</td>
<td>458,817,000</td>
<td>391,096,000</td>
</tr>
<tr>
<td>2009</td>
<td>388,824,700</td>
<td>377,955,000</td>
<td>497,349,800</td>
<td>566,996,000</td>
<td>692,027,000</td>
<td>726,460,000</td>
<td>751,481,000</td>
<td>592,860,000</td>
<td>453,180,000</td>
<td>460,340,000</td>
<td>317,585,200</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL WATER DIVERTED AND SUPPLIED (MONTHLY) (Gallons (US))
8. GPCD REPORTED DATA

ANNUAL

YEAR 2010 TO 2004

<table>
<thead>
<tr>
<th>Year</th>
<th>GPCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>191.69</td>
</tr>
<tr>
<td>2009</td>
<td>199.77</td>
</tr>
<tr>
<td>2008</td>
<td>NA</td>
</tr>
<tr>
<td>2007</td>
<td>#REF!</td>
</tr>
<tr>
<td>2006</td>
<td>#REF!</td>
</tr>
<tr>
<td>2005</td>
<td>NA</td>
</tr>
<tr>
<td>2004</td>
<td>NA</td>
</tr>
</tbody>
</table>

MONTHLY

YEAR 2010

MONTHLY - SINGLE-FAMILY RESIDENTIAL GPCD

Month	GPCD
January | 85.46
February | 79.23
March | 86.79
April | 129.79
May | 144.06
June | 194.00
July | 192.21
August | 168.26
September | 161.12
October | 134.93
November | 132.93
December | 81.39

Peak/Ave | 1.47

MONTHLY - MULTI-FAMILY RESIDENTIAL GPCD

Month	GPCD
January | 51.47
February | 52.77
March | 62.12
April | 64.24
May | 63.30
June | 88.57
July | 78.46
August | 73.22
September | 77.81
October | 61.28
November | 57.38
December | 44.91

Peak/Ave | 1.37

NMOSE GPCD Calculator v2.02
9. Annual Reporting Performance

Overall Annual GPCD (based on Total Population)

<table>
<thead>
<tr>
<th>Year</th>
<th>SFR - System Total</th>
<th>MFR - System Total</th>
<th>ICI</th>
<th>Other Metered</th>
<th>Non-Revenue Water</th>
<th>Total Supplied</th>
<th>Non-Revenue Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Graph?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2010</td>
<td>92.06</td>
<td>18.39</td>
<td>45.14</td>
<td>29.14</td>
<td>191.69</td>
<td>1,002.20</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>97.39</td>
<td>19.12</td>
<td>46.98</td>
<td>10.36</td>
<td>199.77</td>
<td>660.46</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>#REF!</td>
<td>#REF!</td>
<td>#REF!</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>#REF!</td>
<td>#REF!</td>
<td>#REF!</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

City of Las Cruces Utilities

2010 to 2004

Annual Analysis of GPCD - Viewer

(based on Total Population)

NMOSE GPCD Calculator v2.02
Monthly Reporting Performance

Choose Sector

- Single-Family Residential
- Multi-Family Residential
- ICI
- Other Metered
- Non-Revenue

Monthly GPCD

<table>
<thead>
<tr>
<th>Month</th>
<th>Single-Family Residential</th>
<th>Multi-Family Residential</th>
<th>ICI</th>
<th>Other Metered</th>
<th>Non-Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>85.46</td>
<td>51.37</td>
<td>25.82</td>
<td>4.43</td>
<td>21.04</td>
</tr>
<tr>
<td>FEB</td>
<td>79.23</td>
<td>52.77</td>
<td>25.50</td>
<td>3.75</td>
<td>26.61</td>
</tr>
<tr>
<td>MAR</td>
<td>86.79</td>
<td>62.73</td>
<td>38.43</td>
<td>5.18</td>
<td>36.99</td>
</tr>
<tr>
<td>APR</td>
<td>129.79</td>
<td>64.24</td>
<td>49.27</td>
<td>8.97</td>
<td>25.46</td>
</tr>
<tr>
<td>MAY</td>
<td>144.06</td>
<td>63.30</td>
<td>48.64</td>
<td>9.79</td>
<td>48.10</td>
</tr>
<tr>
<td>JUN</td>
<td>194.00</td>
<td>88.87</td>
<td>67.39</td>
<td>12.78</td>
<td>40.48</td>
</tr>
<tr>
<td>JUL</td>
<td>192.21</td>
<td>78.46</td>
<td>57.52</td>
<td>11.39</td>
<td>17.99</td>
</tr>
<tr>
<td>AUG</td>
<td>158.26</td>
<td>73.22</td>
<td>52.71</td>
<td>7.57</td>
<td>46.84</td>
</tr>
<tr>
<td>SEP</td>
<td>159.26</td>
<td>73.22</td>
<td>52.71</td>
<td>7.57</td>
<td>46.84</td>
</tr>
<tr>
<td>OCT</td>
<td>134.93</td>
<td>61.28</td>
<td>46.62</td>
<td>6.05</td>
<td>30.86</td>
</tr>
<tr>
<td>NOV</td>
<td>132.93</td>
<td>57.38</td>
<td>46.07</td>
<td>3.88</td>
<td>3.33</td>
</tr>
<tr>
<td>DEC</td>
<td>81.39</td>
<td>44.81</td>
<td>26.44</td>
<td>1.88</td>
<td>35.76</td>
</tr>
</tbody>
</table>

City of Las Cruces Utilities

2010 to 2004

Monthly Analysis of GPCD - Viewer

(based on sector-specific population)

- Choose Year for Monthly Analysis: 2010
- Choose Sector: Single-Family Residential
NMOSE GPCD Software: Definitions v2.04®

<table>
<thead>
<tr>
<th>Item Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Connections</td>
<td>All active Single Family Residential connections within the utility. Connections that are not occupied or show zero activity are not counted in this category.</td>
</tr>
<tr>
<td>Annual Multi-Family Residential GPCD Calculation</td>
<td>The MFR GPCD is Annual MF Calculation (4.6) divided by the annual MFR Population (4.9).</td>
</tr>
<tr>
<td>Annual Single Family Residential GPCD Calculation</td>
<td>The SFR GPCD is Annual SFR Calculation (3.7) divided by the annual SFR Population average (3.13).</td>
</tr>
<tr>
<td>Billed Water Consumption (Multi-Family Residential)</td>
<td>This is the total billed consumption for Multi-Family residential uses only. Enter the amount of water used (gallons) for multi-family residential connections by month in Table 4.1, or by year in Table 4.5. If multi-family residential is not available as a separate category, provide an explanation in the Comments Box and include usage in the Industrial, Commercial and Institutional Table 5.1 or Other Metered Table 5.2 on Sheet 5.</td>
</tr>
<tr>
<td>Billed Water Consumption (Single-Family Residential)</td>
<td>This is the total billed consumption for Single-Family residential uses only.</td>
</tr>
<tr>
<td>Calculated Growth Rate</td>
<td>Growth in the utility. The growth is determined by evaluating the percentage change in the number of connections within the utility on an annual basis, provided in Table 3.9 Average Connections Calculated. If there are no more than one years’ data, then this will not be calculated. This Table is for the utilities use in checking the growth percentage calculated against their own estimates. It is also used in Table 4.8 Number of (Multi-Family) Units if only the current number of multi-family units can be recorded.</td>
</tr>
<tr>
<td>Census Data</td>
<td>The Census data is used to standardize the calculation of population by utilizing numbers of people per household. It also records information on the vacancy rate within each city which enables calculation of the number of households actually being used. There is a link to a pdf document in Definitions showing the user how to find and record the relevant data.</td>
</tr>
<tr>
<td>Converter</td>
<td>The user may develop a GPCD Analysis based on one of two input unit selections: 1) Gallons (US) 2) Cubic feet. Please select the units from the instructions worksheet. An interactive unit converter is also provided below. Input volume in first box below and select units to be converted.</td>
</tr>
<tr>
<td>Gallons (US) = 0.134 Cubic Feet</td>
<td>1 Gallons (US) = 0.134 Cubic Feet.</td>
</tr>
<tr>
<td>Exported Water</td>
<td>Enter all water exported from the system. This will include any pass-through arrangements or wholesale contracts to other drinking water suppliers, where the reporting utility is the water rights permit holder.</td>
</tr>
<tr>
<td>GPCD</td>
<td>Gallons per capita per day (GPCD) is a method utilized internationally to measure water use by drinking water suppliers. It is most commonly used to describe historical and current water uses, providing a baseline of water use that is not as susceptible to changes in population. GPCD is also used for planning purposes, allowing estimates of future demand requirements based on localized population projections. More sophisticated planning efforts utilize GPCD to determine conservation potential, track the results of program implementation, and calculate projections based on conservation adjusted GPCD.</td>
</tr>
<tr>
<td>General Information</td>
<td>The white boxes are data entry cells and are used for inputting data. All other cells except dropdown menus (purple boxes) are protected for the user's benefit to stop any overwriting of formulas and calculated cells. The green boxes are values that have been calculated based on inputs.</td>
</tr>
<tr>
<td>Graphing Results</td>
<td>Datasets will automatically be graphed when using the graphing data tools in both the Annual and Monthly Performance worksheets. For example, choosing the year and the use sector from the purple dropdown boxes will allow these variables to be graphed.</td>
</tr>
<tr>
<td>Imported Water</td>
<td>Enter all water imported from other systems. This will include any retail contracts with other drinking water suppliers where this utility purchases water from another utility and is not the permit holder.</td>
</tr>
<tr>
<td>Inactive and Zero Connections</td>
<td>The inactive and zero connections are recorded in Table 3.3 so that unused single family residential connections will be removed from the calculation of single family population when Total Units is chosen from the drop down list in Table 3.2.</td>
</tr>
</tbody>
</table>
Industrial, Commercial and Institutional (ICI)
Includes industrial properties, such as manufacturing, commercial properties such as restaurants, shopping malls, and institutional customers such as schools, universities and prisons.

Multi-Family Residential Connections
A multifamily unit is living units in an apartment complex, duplexes, triplexes, trailer parks, and condo or town houses that have multiple units serviced by a single connection. They are not counted in the single-family residential category.

Multi-Family Residential Population
Multi-family population is calculated from number of MFR units in the Annual Unit Calculation (4.8) minus Vacant MFR Connections (4.10). That number is then multiplied by Average Size of Occupied Housing Units from the US Census (2.1).

Non-Revenue Water
Non-revenue water is all the water the utility diverts and/or produces, but does not get paid for. Non-revenue water includes apparent losses such as meter inaccuracies, theft, and database errors, real losses such as leaks. It also includes unbilled authorized uses such as fire-fighting, line flushing and disinfection. The Calculator does not provide data entry for unmetered billed water. This might include bulk sales or monthly fees not based on usage. The non-revenue water in the Calculator includes all water that is not metered.

Other Metered
All categories of billed metered use that is not otherwise classified in SFR, MFR or ICI. This provides the user the opportunity to track alternative categories. Examples included irrigation only, stand pipes, and fire hydrant/construction meters. Everything not included in SFR, MFR, ICI or Other will end up in non-revenue water.

Reuse
Reuse, or Recycled water is former wastewater (sewage) that has been treated to remove solids and certain impurities and reused by a water supplier. In most locations, it is only intended to be used for nonpotable uses, such as irrigation, and dust control. This data is not included in any other calculation. It is provided as a tracking tool for the user.

Single Family Residential Connections
SFR Connection is a stand alone or independently metered housing unit. The number used in the Calculator can be Total Connections or Active Connections only.

Single Family Residential Population
Single Family Population (3.13) is calculated from number of active connections times size of average household (3.12). It can be calculated monthly or annually depending on the data provided. If Total Connections is chosen (3.2), then inactive connections are subtracted prior to multiplying by size of average household (3.12). If Active Connections is chosen (3.2), then number of connections are multiplied by size of average household (3.12) without any subtractions.

Size of Average Household
This Table is determined from the US Census data in Table 2.1, Sheet 2. This data is used to determine a total single-family population and total multi-family population for both the monthly and annual data (Tables 3.4 and 3.13, Tables 4.3 and 4.9 respectively).

Total Connections
All active and inactive Single Family Residential connections within the utility.

System Total GPCD
The System Total GPCD is calculated by dividing the quantity of Total Water Diverted (plus imports minus exports) by the System Total Population.

Total Population
The Total Population estimate is the sum of the single-family population + multi-family population + group quarters population.

Vacant Single-Family Residential Connections
This is a calculated field using either i) the average of the monthly vacant SFR connections, If monthly data are available or ii) an estimated value based on the Census data vacancy rates multiplied by the number of Total SFR connections. When Total Connections is chosen in Table 3.2, vacant single family residential connections are subtracted from Total Connections prior to calculating a population (based on household size) and a single family GPCD.

How to find the data required for Census section
Click on [Census 2000]

Click on [Summary File 1]

Click on [Access to all tables and maps in American FactFinder]
Click on [Detailed tables]

Click on the dropdown boxes and
Select [Place]
When “Select a State” box appears
Select [New Mexico]
Select Geographic area from drop down list that is the closest description of your service area
Add this to the base box as shown below
Click [Next]

Add boxes P37, H3, and H12 to the base box by highlighting them and then click [Add].
Once all the tables show in the base box click [Show Result]

Transfer results to spreadsheet

END
In fiscal year 2010 (July, 2009 to June 2010) the City of Las Cruces adopted a new fiscal monitoring system entitled Munis. The Munis system was designed to facilitate the logistical functions of the City, including the billing for the Utility Department. For fiscal year 2010 and 2011 the Utility Department has been working with the developers of Munis to ease some of the billing problems. Due to this change in the accountability system, the metered usage for July - September, 2009 are somewhat skewed and are not a true representation of the amount of water usage per sector. The numbers in the OSE GPCD Calculator are the best to our knowledge at this point in time for 2009 and 2010. Measures are currently being taken to assure a more accurate

The 2010 US Census count indicates that 2010 household size was 2.3 persons per household. Since this calculation is for 2009 and 2010, we have adjusted household size to 2.31 persons per household. We have also adjusted the group quarters population in accordance with a Census correction issued in 2002.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Service</td>
<td>Sheet W-2010-2</td>
</tr>
<tr>
<td>Small Commercial Service</td>
<td>Sheet W-2010-3</td>
</tr>
<tr>
<td>Large Commercial Service</td>
<td>Sheet W-2010-4</td>
</tr>
<tr>
<td>Large Multi Unit Service</td>
<td>Sheet W-2010-4.1</td>
</tr>
<tr>
<td>Industrial Service</td>
<td>Sheet W-2010-5</td>
</tr>
<tr>
<td>Paz Well Municipal Parks Irrigation – Non-potable</td>
<td>Sheet W-2010-6</td>
</tr>
<tr>
<td>Bulk Water Service – Hydrant Metered</td>
<td>Sheet W-2010-7</td>
</tr>
<tr>
<td>Parks</td>
<td>Sheet W-2010-8</td>
</tr>
<tr>
<td>Golf Course</td>
<td>Sheet W-2010-9</td>
</tr>
<tr>
<td>Parks and Golf Course Interruptible Time of Use</td>
<td>Sheet W-2010-10</td>
</tr>
<tr>
<td>Reclaimed Water Service</td>
<td>Sheet W-2010-11</td>
</tr>
<tr>
<td>Landscape Meter</td>
<td>Sheet W-2010-12</td>
</tr>
<tr>
<td>Connection Charges</td>
<td>Sheet W-2010-13</td>
</tr>
<tr>
<td>Billing Issues</td>
<td>Sheet W-2010-14</td>
</tr>
<tr>
<td>Litigation Cost Recovery Rate Rider</td>
<td>Sheet W-2010-15</td>
</tr>
<tr>
<td>Development Impact Fee Rate Rider</td>
<td>Sheet W-2010-16</td>
</tr>
</tbody>
</table>
AVAILABILITY
Available in the Las Cruces Utilities water service area for the exclusive use of a single metered family residence for domestic purposes. Service to buildings attached to the residence, including garages and other minor buildings for the use of the residents, may also be through the residential meter. Service to a residence, which is used in part for commercial purposes but the predominant usage is for residential purposes, shall be served under this rate schedule.

Landscape water meter available per Landscape Meter Schedule, see Sheet No. W-2010-12.

RATE
The bills are the sum of:

Domestic Meter

Access Charge

Per month... $6.82

Volume Charge

Summer Period (billing months of June, July, August, and September)

First 3,000 gallons .. $0.70

Over 3,000 gallons... $2.08

Non-Summer Period (all other billing months)

First 3,000 gallons .. $0.70

Over 3,000 gallons... $1.89

Tax

Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY
Available in the Las Cruces Utilities water service area for any establishment engaged in the operation of a business, an institution, whether or not for profit, or government entities.

Such enterprises shall include, but not be limited to, clubs, hotels, motels, schools, hospitals, multi-unit complexes, churches, and municipal, county, state and federal buildings.

This rate applies to such customers whose consumption is less than 50,000 gallons for three (3) or more of the twelve (12) months of the rate class review period. The rate class review period is a period of twelve (12) consecutive billing months that Las Cruces Utilities will review to determine the customer’s appropriate rate classification. An initial rate review will be conducted in conjunction with the implementation of new rates approved by the Board of Commissioners for the City of Las Cruces Utilities. Subsequent rate reviews will be undertaken approximately twelve (12) months from the effective date of the new rates and every twelve (12) month period thereafter. A customer’s rate classification will not be changed as a result of a rate review in the absence of at least twelve (12) consecutive months of billing history.

Landscape water meter available per Landscape Meter Schedule, see Sheet No. W-2010-12.

RATE
The bills are the sum of:

Access Charge
Per month ... $15.75

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons ... $1.26

Non-Summer Period (all other billing months)
Per 1,000 gallons ... $1.05

Tax
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY
Available in the Las Cruces Utilities water service area for any establishment engaged in the operation of a business; an institution, whether or not for profit; or government entities.

Such enterprises shall include, but not be limited to, clubs, hotels, motels, schools, hospitals, multi-unit complexes, churches, municipal, county, state and federal buildings.

This rate applies to customers whose consumption equals to or exceeds 50,000 gallons within the billing cycle during at least ten (10) months of the twelve (12) months within the rate class review period. Customers whose usage is equal to or greater than 1,250,000 gallons within any month of the twelve (12) month review period shall receive service under the Industrial tariff unless the customer can demonstrate to the satisfaction of the Utility Director that the measured usage was the result of a nonrecurring circumstance. The rate class review period is a period of twelve (12) consecutive billing months that Las Cruces Utilities will review to determine the customer's appropriate rate classification. An initial rate review will be conducted in conjunction with the implementation of new rates approved by the Board of Commissioners for the City of Las Cruces Utilities. Subsequent rate reviews will be undertaken approximately twelve (12) months from the effective date of the new rates and every twelve (12) month period thereafter. A customer's rate classification will not be changed as a result of a rate review in the absence of at least twelve (12) consecutive months of billing history.

Landscape water meter available per Landscape Meter Schedule, see Sheet No. W-2010-12.

RATE
The bills are the sum of:

Access Charge
Per month……………………………………………………………………………………………………. $37.00

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons ……………………………………….………………………………………………….. $2.05

Non-Summer Period (all other billing months)
Per 1,000 gallons ……………………………………….………………………………………………….. $1.71

Tax
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
WATER
LARGE MULTI-UNIT SERVICE

AVAILABILITY
Available in the Las Cruces Utilities water service area for the exclusive use of multiple dwelling, master metered, residential units for domestic purposes such as apartment complexes, townhomes, and mobile home parks.

This rate applies to customers whose consumption equals to or exceeds 50,000 gallons within the billing cycle during at least ten (10) months of the twelve (12) months within the rate class review period. Customers whose usage is equal to or greater than 1,250,000 gallons within any month of the twelve (12) month review period shall receive service under the Industrial tariff unless the customer can demonstrate to the satisfaction of the Utility Director that the measured usage was the result of a nonrecurring circumstance. The rate class review period is a period of twelve (12) consecutive billing months that Las Cruces Utilities will review to determine the customer’s appropriate rate classification. An initial rate review will be conducted in conjunction with the implementation of new rates approved by the Board of Commissioners for the City of Las Cruces Utilities. Subsequent rate reviews will be undertaken approximately twelve (12) months from the effective date of the new rates and every twelve (12) month period thereafter. A customer’s rate classification will not be changed as a result of a rate review in the absence of at least twelve (12) consecutive months of billing history.

Landscape water meter available per Landscape Meter Schedule, see Sheet No. W-2010-12.

RATE
The bills are the sum of:

Access Charge
Per month: $37.00

Volume Charge
- **Summer Period** (billing months of June, July, August, and September)
 Per 1,000 gallons: $2.05
- **Non-Summer Period** (all other billing months)
 Per 1,000 gallons: $1.71

Tax
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY
Available in the Las Cruces Utilities water service area for any establishment engaged in the operation of a business; an institution, whether or not for profit; or a governmental entity.

Such enterprises will include, but not limited to, industrial installations, schools, hotels, motels, municipal, county or federal buildings, etc.

This rate applies to such customers whose consumption within the billing cycle equals to or exceeds 1,250,000 gallons within any month of the twelve (12) month rate class review period. The rate class review period is a period of twelve (12) consecutive billing months that Las Cruces Utilities will review to determine the customer’s appropriate rate classification. An initial rate review will be conducted in conjunction with the implementation of new rates approved by the Board of Commissioners for the City of Las Cruces Utilities. Subsequent rate reviews will be undertaken approximately twelve (12) months from the effective date of the new rates and every twelve (12) month period thereafter. A customer’s rate classification will not be changed as a result of a rate review in the absence of at least twelve (12) consecutive months of billing history.

Landscape water meter available per Landscape Meter Schedule, see Sheet No. W-2010-12.

RATE
The bills are the sum of:

Access Charge
Per month.. $1,000.00

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons $1.54

Non-Summer Period (all other billing months)
Per 1,000 gallons $1.28

Tax
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority
and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY
Available in the Las Cruces Utilities water service area for any municipally owned park where non-potable water wells are located and used for the purpose of landscape irrigation.

RATE
The bills are the sum of:

Access Charge
Per month... $0.00

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons .. $1.32

Non-Summer Period (all other billing months)
Per 1,000 gallons .. $1.32

Tax
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY
Available in the Las Cruces Utilities water service area by permit for use in connection with the construction, alteration or repair of buildings or other similar activities requiring temporary service through hydrant meters.

To protect the water system from contamination, a backflow device (reduced pressure principle assembly) may be required to be installed on the hydrant meter. The backflow device shall be provided by Las Cruces Utilities. Testing of the backflow device shall be procured by the customer from Las Cruces Utilities or a certified backflow device testing provider that is accepted and recognized by the City of Las Cruces Pollution Program.

A separate charge will be imposed for each relocation of any bulk water meter.

RATE
The bills are the sum of:

Access Charge
Per month... $23.50

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons ... $3.74
Non-Summer Period (all other billing months)
Per 1,000 gallons ... $3.12

Bulk Hydrant Meter Relocation Charge
Per relocation.. $150.00

Backflow Device Fee.. $50.00

Tax
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY

Available by contract in the Las Cruces Utilities water service area for parks for the purpose of irrigation. All other related uses will be billed as per the appropriate Commercial rates.

RATE

The bills are the sum of:

Access Charge
Per month... $82.00

Volume Charge
Summer Period (billing months of June, July, August, and September)
Per 1,000 gallons ... $1.93

Non-Summer Period (all other billing months)
Per 1,000 gallons ... $1.61

Tax
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY

Available by contract in the Las Cruces Utilities water service area to any golf course customer.

RATE

The bills are the sum of:

Access Charge
Per month: $1,000.00

Volume Charge
Per 1,000 gallons: $1.54

Tax
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY
Available in the Las Cruces Utilities (LCU) water service area for golf courses and municipally owned parks for the purpose of irrigation. This will only apply to golf courses having ponding facilities to meet interruption of service events and parks that are willing to meet the operational needs of the utility.

A meter is installed to measure use during on-peak (6:00 a.m. to 6:00 p.m.) and off-peak (6:00 p.m. to 6:00 a.m.) hours. The Off-Peak rate applies to any water used during off-peak (6:00 p.m. to 6:00 a.m.) or any alternate period determined by the utility. All other use not off-peak will be billed at the On-Peak rate.

Service under this schedule shall be subject to interruption as determined by the Utilities Director or designee in response to system operational needs. The customer must cease water consumption upon notification to interrupt service. Customers shall receive notification from the Utilities Director or designee when an interruption of service event has been terminated and consumption of water can be resumed. A single interruption of service notification by LCU shall not exceed ten (10) continuous hours in duration. A customer's failure to cease water consumption upon notification or during an interruption of service event shall be deemed a non-compliance event.

Customers who fail to comply with interruption of service notification will be billed at the On-Peak rate for service taken during the interruption period and will be subject to a penalty as set forth below. The Utilities Director has the option to cancel service under this schedule when a customer fails to comply with interruption of service notification.

A meter shall be installed to measure water use by time of day for service under this schedule. The customer shall install the time of use meter at customer’s own expense.

A condition of service under this schedule is signing a contract to include designation of a person responsible for ceasing water consumption.

RATE
The bills are the sum of:

Golf Course

<table>
<thead>
<tr>
<th>Access Charge</th>
<th>$850.00</th>
</tr>
</thead>
</table>

Volume Charge

| On-Peak Rate Volume Charge | $3.09 |
| Per 1,000 gallons | |

| Off-Peak Rate Volume Charge | $1.03 |
| Per 1,000 gallons | |

Parks

<table>
<thead>
<tr>
<th>Access Charge</th>
<th>$82.00</th>
</tr>
</thead>
</table>

Volume Charge

| On-Peak Rate Volume Charge | $3.09 |
| Per 1,000 gallons | |

| Off-Peak Rate Volume Charge | $1.03 |
| Per 1,000 gallons | |

Non-Compliance Penalty

Penalty for each non-compliance event... 35% of Total Bill for billing cycle

Tax

Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS

The unit volume for the purpose of measurement shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY
Available in the Las Cruces Utilities reclaimed water service area for the exclusive use of golf courses, parks, and medians and for construction water for irrigation, non-potable purposes, or other authorized use through regulations. The customer must execute a reclaimed water use agreement.

RATE
The bills are the sum of:

Access Charge
Per month.. $20.00

Volume Charge
Per 1,000 gallons... 50% of applicable potable water rate schedule

Tax
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
AVAILABILITY
Available in the Las Cruces Utilities to all classes for irrigation purposes except for golf courses and municipal parks. The customer must pay for all expenses associated with the installation of the landscape meter.

RATE
The bills are the sum of:

Access Charge
Per month... 50% of applicable Access Charge

Volume Charge
Per 1,000 gallons... Applicable summer rate

Tax
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
WATER CONNECTION CHARGES

<table>
<thead>
<tr>
<th>Line Size</th>
<th>Service Line (up to 25')</th>
<th>Meter Charge</th>
<th>Service Line Additional Ft.</th>
<th>Manifold</th>
<th>Pavement Cut</th>
<th>Pavement Cut (Over 25')</th>
<th>Main Line Extension</th>
<th>Size</th>
<th>Mainline Water Tap Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4"</td>
<td>$1,020</td>
<td>$187</td>
<td>$20</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>$1,020</td>
<td>$246</td>
<td>$20</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1/2"</td>
<td>$1,160</td>
<td>$408</td>
<td>$20</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>$1,360</td>
<td>$627</td>
<td>$20</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td>$1,340</td>
<td>$1,644</td>
<td>$20</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4"</td>
<td>$1,340</td>
<td>$2,317</td>
<td>$25</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$50</td>
<td>4"</td>
<td>$1,245</td>
</tr>
<tr>
<td>6"</td>
<td>$1,590</td>
<td>$2,614</td>
<td>$25</td>
<td>$100</td>
<td>$750</td>
<td>$30</td>
<td>$50</td>
<td>6"</td>
<td>$1,245</td>
</tr>
<tr>
<td>8"</td>
<td>Based on Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Special metering equipment required to serve a customer, including time of use meters, may cost more than the amounts set forth on this schedule. In such cases, the customer will be responsible for the actual cost of meter installation, including the meter itself, any other equipment or facilities, labor taxes, etc.

Meter Relocation Charge: Same charge(s) as a connection.

$150 Unable to Connect Service Charge

This charge shall be made when Las Cruces Utilities is notified by the customer or customer’s representative that the service site is ready for service and connection and utility personnel have been scheduled to physically connect service, but are unable to connect the service due to, among other things, work site obstructions or incomplete service installation necessary for the utility to perform the necessary and appropriate connection.
Disputed Bills
Customers may dispute their billings up to 6 months from the due date.

Refunds
If it is determined the Las Cruces Utilities made or was the cause of a billing error, refunds will be retroactive for up to twelve (12) months from the time the request was submitted to Customer Service for review.

Retroactive Billing due to Tampering
If it is determined that a meter was tampered with, Las Cruces Utilities will make every effort to bill to the latest known billing that was not impacted by tampering. The highest volume between the route or city average for the class will be used for all affected billing periods plus a 30% total pretax billing penalty \((\text{access charge} + \text{volume charge} = \text{pretax total bill}) \times 1.30 = \text{adjusted pre-tax bill}\).

Services rendered without Account Activation
When a customer receives utility services and does not submit an application for services to Customer Service, retroactive billing for a minimum five year period will commence at the time the discovery is made of the unbilled services. The bills for all affected periods will be based on the route or city average for the class. If the customer can prove to the Customer Service Manager's satisfaction that neither they nor any tenant or related person benefited from the services, then the retroactive billing will begin at the time period determined by the Customer Service Manager with consent of the Utilities Director.
LAS CRUCES UTILITIES

APPPLICABILITY
All water service provided by Las Cruces Utilities shall be subject to the terms of this rider schedule.

LITIGATION COST RECOVERY RATE RIDER (LCRR)
Applicable Litigation Cost Recovery Rate Rider established by order of the Utilities Board. The LCRR shall enable Las Cruces Utilities to recover or refund litigation expenses exceeding or falling below the level approved in LCUB Case No. 2009-001 (W) and defined as the Baseline Litigation Costs (BLC). A recovery or refund shall be based on the positive or negative difference between the latest fiscal year litigation expenditures and the BLC. The recovery or refund factor shall be calculated based on the total water consumption for the reconciled fiscal year and shall be reflected on customer bills as a charge in dollars and/or cents per 1,000 gallons billed.

TAX
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
APPLICABILITY
All water service provided by Las Cruces Utilities shall be subject to the terms of this rider schedule.

DEVELOPMENT IMPACT FEE RATE RIDER (DIFRR)
Applicable Development Impact Fee Rate Rider established by order of the Utilities Board. The DIFRR shall enable Las Cruces Utilities to recover or refund Development Impact Fee expenses for which ratepayers are responsible exceeding or falling below the level approved in LCUB Case No. 2009-001 (W) defined as the Baseline Development Impact Fee Expense (BDIFE). A recovery or refund shall be based on a positive or negative difference between actual fiscal year development fund expenses for which ratepayers are responsible and the BDIFE. The recovery or refund factor shall be calculated based on the total water consumption for the reconciled fiscal year and shall be reflected on customer bills as a charge in dollars and/or cents per 1,000 gallons billed.

TAX
Applicable Taxes & Payment in Lieu of Franchise Tax assessed by a Governmental Authority and not included in Cost of Service rates.

BILLING UNITS
The unit volume for the purpose of measurement per service shall be 1,000 gallons for the amount consumed in a billing cycle.
(e) *Hearing officer.* Upon timely receipt of a request for hearing, the DWR shall request the appointment of a hearing officer by the city manager. The hearing officer shall not be a city employee and shall have knowledge of the technical requirements. Any reasonable fees and expenses of the hearing officer shall be paid by the city. The user shall reimburse the city for these fees and expenses and for any other reasonable costs of the hearing if the user does not prevail. The hearing officer shall have the discretion to prorate the fees, charges, and costs of the hearing if a compromise decision is reached.

(f) *Continuation of suspension, revocation, or termination.* The suspension, revocation, or termination shall continue in effect from the effective date given in the notice of the suspension, revocation, or termination until completion of the hearing, provided that all such hearings shall begin within 30 days of the day that the DWR received the request for hearing. In the event that hearing is not begun within the 30 day period, the suspension, revocation, or termination shall be delayed until the hearing officer issues a final determination. The hearing officer's final determination shall be the final administrative decision and shall exhaust all administrative remedies of the parties.

(g) *Appeal to district court.* Any party aggrieved by a final decision of the hearing officer may appeal to the state district court within 30 days after receipt of final administrative decision. (Ord. No. 1793, § I, 4-17-00)

Sec. 28-294. Industrial user noncompliance—Civil action.

(a) *Injunctive relief.* The city attorney may, in the name of the city, file in state district court or such other courts as may have jurisdiction, a suit seeking the issuance of an injunction, damages, or other appropriate relief to enforce the provisions of this article or applicable law or regulation.

(b) *Assessment of damages.* When a discharge of waste causes an obstruction, damage, or any other impairment to the POTW or any other expense to the city, the city shall assess the expenses incurred. The DWR shall file a claim with the user or any other person causing or allowing said damages to occur seeking reimbursement for any expenses incurred by the city. If the claim is ignored or denied, the DWR shall notify the city attorney to take such measures as shall be appropriate to recover any expense or other damage suffered by the city. (Ord. No. 1793, § I, 4-17-00)

Sec. 28-295. Industrial user noncompliance—Additional remedies.

In addition to other remedies for enforcement provided herein, the DWR may petition NMED or EPA to exercise such methods or remedies as shall be available to such government entities to seek criminal or civil penalties, injunctive relief, or such other remedies as may be provided by applicable federal or state laws to insure compliance by users of applicable pretreatment standards, to prevent the introduction of toxic pollutants or other regulated pollutants into the POTW, or to prevent such other water and/or ground water pollution as may be regulated by state or federal law. (Ord. No. 1793, § I, 4-17-00)

Secs. 28-296—28-300. Reserved.

ARTICLE VII. WATER CONSERVATION

Sec. 28-301. Title; purpose.

This article shall be known as the Water Conservation Ordinance. This article shall both require and encourage all users of water within the city limits to reduce water consumption and waste. (Code 1988, § 29-361)

Sec. 28-302. Applicability.

(a) The restrictions contained in this article shall apply to all users of city-provided water and to all users of water provided by water utility companies franchised by the city; however, the water use restrictions contained in subsection 28-304(b)(1) shall apply to all water users within the city limits.

(b) The outdoor vegetation watering restrictions in section 28-303 shall not apply to users of irrigation water provided by Elephant Butte Irri-
Sec. 28-303. Outdoor vegetation watering restrictions.

(a) All outdoor vegetation on residential and commercial properties located (i) on the even numbered side of the street shall be watered only on Tuesdays, Thursdays and Saturdays, and (ii) on the odd numbered side of the street shall be watered only on Wednesdays, Fridays and Sundays. For corner buildings or properties having both odd and even numbers, the number shown on the city's or the franchised water companies' utility records shall control.

(b) From April 1 to September 30, all outdoor watering of vegetation is prohibited between the hours of 10:00 a.m. and 6:00 p.m.

(c) A water utility company franchised by the city may apply yearly to the city's utilities division for a waiver from the outdoor vegetation watering restrictions in this section in accordance with the following:

(1) The waiver will be granted by the utilities division if it determines that compliance with these restrictions will negatively impact the company's water system operations. The granting and the renewal of any waiver will be based on the company's consumption patterns being comparable to the city's residential water use.

(2) Each waiver request must be accompanied by monthly water use records for the past year. The utilities division may require that the company provide additional information to justify the waiver request.

(3) If the utilities division denies the waiver, the water company may file a written appeal with the city manager within ten days of the denial. The city manager will issue a final written decision within 20 days of receipt.

(4) The waiver may be revoked by the city in a declared water emergency.

(Code 1988, § 29-363)

Sec. 28-304. Miscellaneous water use restrictions.

(a) The washing of vehicles and other types of mobile equipment shall be done only with a handheld bucket or a handheld hose equipped with a functioning shutoff nozzle for quick rinses. This restriction does not apply to the washing of vehicles or mobile equipment at a commercial carwash or commercial service station. When used in this subsection, the term "bucket" means a container holding five gallons of water or less.

(b) The following uses of water are defined as wasting water and are prohibited:

(1) Allowing water to flow onto adjacent property or onto any street, alley or other public right-of-way.

(2) Watering outdoor vegetation excessively so that water ponds on site.

(3) Failing to repair a water leak within five working days of the discovery of the leak.

(4) Washing sidewalks, driveways, parking areas, tennis courts, patios and other impervious surfaces with a hose, except in emergencies to remove spills of hazardous materials or to eliminate dangerous conditions which threaten the public health, safety or welfare. When used in this subsection, the term "impervious surface" means any surface covered with nonporous material.

(Code 1988, § 29-364)

Sec. 28-305. Penalty, injunctive relief authorized.

(a) Any person who is convicted of a violation of any section of this article shall be guilty of a petty misdemeanor and shall be punished in accordance with section 1-10.

(b) With respect to violations that are continuous in time, each day the violation continues is a separate offense.
(c) Violations that are continuous in time may be abated by injunctive or other equitable relief. The imposition of a criminal penalty does not prevent equitable relief.
(Code 1988, § 29-365)

Sec. 28-306. Exceptions to enforcement.
The following shall constitute exceptions from compliance with this article concerning outdoor vegetation watering restrictions and miscellaneous water use restrictions:

1. The water flow is a result of natural events such as rain or snow, unless the user is watering at the same time.

2. The water flow is a result of temporary malfunctions of or vandalism to the municipal water supply system.

3. The water flow is a result of water used for firefighting purposes, including the inspection and pressure testing of fire hydrants, or the use of water for firefighting training activities.

4. The use of water is required for the control of dust or the compaction of soil as may be required by municipal codes.

5. The water is used to wash down areas where flammable or otherwise hazardous material has spilled, creating a dangerous condition.

6. The water is used to prevent or abate public health, safety or accident hazards when alternate methods are not available.

7. The water is used for routine inspection or maintenance of the municipal water supply system.

8. The water is used to facilitate construction within public a right-of-way in accordance with city requirements and good construction practices.

9. The use of the water is permitted under a variance granted by the city.

10. The water is used for street sweeping, sewer maintenance or other established utility practices.

11. Watering contrary to the odd/even or time of day requirements is permitted for one day only where application of chemicals requires immediate watering to preserve an existing lawn.

12. Watering contrary to the odd/even or time of day requirements is permitted for up to two weeks for newly planted landscaping vegetation.
(Code 1988, § 29-366)

Sec. 28-307. Water emergency; restriction of water use.

(a) The city council may declare a water emergency during a severe drought or during any condition which significantly reduces the city's ability to supply water in order to protect the public health, safety or welfare or to preserve the water supply.

(b) During such a water emergency, the city manager may implement water use restrictions approved by the city council.
(Code 1988, § 29-367)

Secs. 28-308—28-350. Reserved.

ARTICLE VIII. ELECTRIC UTILITY

Sec. 28-351. Authority.
The city council, pursuant to NMSA 1978, § 3-24-1 and article 10, section 6 of the state constitution, enacts this article relating to the establishment of an electric utility as authorized by such sections.
(Code 1988, § 29-351; Ord. No. 1793, § II, 4-17-00)

Sec. 28-352. Purpose.
The purpose of this article is to provide for the efficient delivery of reliable electric power service to electricity consumers in the city at the lowest cost.
(Code 1988, § 29-352; Ord. No. 1793, § II, 4-17-00)

State law reference—Electric utility, NMSA 1978, § 3-24-1 et seq.
Appendix E: Water Conservation Plan Advisory Committee Comments

<table>
<thead>
<tr>
<th>Committee Member Expertise</th>
<th>Committee Member Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation and Landscape</td>
<td>• Increase Utilities involvement for permit requirements for new irrigation system installation. (Include site inspection and site audit)</td>
</tr>
<tr>
<td></td>
<td>• Implement required landscape standard for new residents/buildings to adopt smart /rain sensor controllers</td>
</tr>
<tr>
<td></td>
<td>• Implement master valve in irrigation designs that will help reduce water loss in cases of leaky valves.</td>
</tr>
<tr>
<td></td>
<td>• Prohibit use of overhead spray irrigation for watering of trees and shrubs.</td>
</tr>
<tr>
<td></td>
<td>• Offer incentive programs (i.e. award program for homeowners that lower their gpcd).</td>
</tr>
<tr>
<td>Environmental</td>
<td>• Conserve to Enhance Program – Program that allows residents who are motivated to conserve water to reduce their water bills and dedicate the cost savings to local environmental enhancement projects.</td>
</tr>
<tr>
<td>Homeowner/Community Organizer</td>
<td>• Implement rainwater harvesting project</td>
</tr>
<tr>
<td>Realtor Association</td>
<td>• Education of realtors</td>
</tr>
<tr>
<td></td>
<td>• Implement water conservation feature to MLS for proper use of irrigation systems and water audits</td>
</tr>
<tr>
<td></td>
<td>• Develop water conservation materials for title and escrow companies that will become part of closing packets.</td>
</tr>
<tr>
<td></td>
<td>• Distribute educational materials to new homeowners concerning landscape irrigation.</td>
</tr>
<tr>
<td></td>
<td>• Promote “green” homes and their environmental benefits.</td>
</tr>
<tr>
<td>In-door water use/plumbing/appliance distributor</td>
<td>• Promote EPA WaterSense products</td>
</tr>
<tr>
<td></td>
<td>• Encourage installation/replacement of low flow toilets for older residential homes.</td>
</tr>
<tr>
<td></td>
<td>• Encourage installation/replacement of low flow toilets for older residential homes.</td>
</tr>
</tbody>
</table>
| **Professor/Extension Turf Specialist** | of low flow showerheads and faucets
- Encourage installation of hot water recirculation.
- Develop public information materials for involuntary water conservation practices (i.e. fix leaky faucets, use shutoff valve on hose, run clothes and dish washer only with full load
- Develop demonstration workshops on current up-to-date water conservation devices
- Identify the purpose of landscape for water conservation. What exactly are the quality expectations? (i.e. high traffic and cold tolerance use Kentucky bluegrass, perennial ryegrass, and tall fescue; for low traffic and cold tolerance use buffalograss and blue grama grasses.)
- Identify irrigation requirements/evapotranspiration rate (ET) for specific turf
- Use weather stations to identify ET rates
- Conduct irrigation audits and workshops
- Consider alternative irrigation systems (subsurface drip) that apply water uniformly and more efficient than traditional sprinkler systems |
| **Hotel, Restaurants and Tourism** | Conduct irrigation audits and workshops for landscaping
- Consider using graywater for landscape watering
- Conduct workshops on water usage for cleaning
- Conduct workshops for cleaning staff on water conservation practices (bedding items)
- Examine other alternatives for cleaning of floors.
- Install low flow toilets in older restaurants and hotels
- Conduct leak detection audits (indoor |
| Las Cruces Public Schools | • Conduct landscape audits and education for irrigation and grounds maintenance.
• Develop and adopt policy for a general irrigation scheduling and water budgets. Currently each school controls their own grounds and watering schedules, which vary from school to school. Conducting in-door water audits. |
| Medical Institutional | • Currently 90 percent of the hospitals have been retrofitted with water efficiency toilets and showerheads. Maintenance is using microfiber for cleaning of floors. Icemaker has been converted to air-cool instead of water cooled. The hospital does have a variance due to the amount of landscape. |
Appendix F: Water Conservation Plan Public Comments:

<table>
<thead>
<tr>
<th>Category</th>
<th>Comments</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input Meetings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rates</td>
<td>Current rates are very cheap – possibly raise water rates but lower reclaimed water rate.</td>
<td>During the last water rate case (2010) the Rate Advisory Committee requested that LCU review the rates in 2 years; examining the possibility of a third tier for water conservation.</td>
</tr>
<tr>
<td>Reuse</td>
<td>1. Allow residents to have water tanks where reuse can be delivered to their homes for outdoor landscape use. Make reuse water available for landscaping (residential/businesses). Make it easier for public to use reuse water.
2. Make it mandatory that companies use reuse water for dust control and other uses instead of potable water. Send out information to construction companies that reuse is available. Explore ways for car washes to use reuse water.</td>
<td>1. The discharge permit from New Mexico Environmental Department (NMED) regulates/restricts reclaimed water discharged from the East Mesa Reclamation Plant (EMRP). Currently our discharge permit allows reclaimed water for 2 public parks and other temporary uses. Temporary use can include (but not limited to) dust control, construction usage, and watering of landscape on street medians. We are currently working with Centennial High School on their discharge permit. Reclaimed water will be used for landscape. Sonoma Ranch Golf Course has their own discharge permit which allows them to discharge reclaimed water into their pond and blend with groundwater from their well for landscape usage.
2. The City will encourage the use of reuse for construction. The EMRP discharge permit will be renewed in 2012. At that time we will explore other uses for reclaimed water. Part of the problem with reuse is 1) the lack of purple pipe network throughout the City and 2) the amount of effluent actually going into the EMRP. We currently are only taking in about 250,000 GPD to the EMRP. The plant has the capacity of 1 MGD.</td>
</tr>
<tr>
<td>Indoor use</td>
<td>Pass an ordinance for the use of waterless urinals in the City</td>
<td>The International Uniform Plumbing Codes will be released in 2012. The new codes may require waterless urinals for new commercial construction.</td>
</tr>
<tr>
<td>Outdoor use (landscape)</td>
<td>Require/mandate all irrigation systems install a shut-off valve that will activate when a sprinkler head is broken. Mandate smart irrigation controllers.
Take out the irrigation & design standard (guidelines/encouragement)</td>
<td>This mandate for irrigation systems is being addressed in the City Design Standards Committee. The City is encouraging smart technology and has written a proposal to BOR for a smart irrigation controller rebate. The guidelines for the irrigation & design standards are being address through the City Design Standard Committee. Those listed in the plan are just guidelines. All of the</td>
</tr>
<tr>
<td>Incentives</td>
<td>Rebates: First meeting it was discussed. Second meeting discussed offering rebate for turf removal.</td>
<td>The current rate structure does not allow financial incentives such as rebates.</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Education</td>
<td>Landscaping classes – complement NMSU Master Gardener program. Landscape watering classes. Classes on native vegetation, irrigation controllers, soils, evaporative coolers.</td>
<td>The Water Conservation Program will continue the Lush & Lean Program which was established in 2006. Workshop classes will focus on outdoor irrigation usage.</td>
</tr>
<tr>
<td>General comments:</td>
<td>1. Change terminology – Conservation gives a negative connotation to the public; adopt a new program title such as water-wise. 2. Reaching the public, list serve, information cards, publications, 3. Plan needs to be rational and understandable 4. Climate change mentioned in the Plan needs to be focused on local impact. 5. Why do we need a Plan? 6. Water Quality – water has deteriorated over the years. 7. City Council needs to identify ideas to exploit new sources of water, something that goes beyond conservation and promote open space.</td>
<td>1. We will be working with our Public Relations Firm (Suzanne Michaels Communications). Much of the cool water conservation titles have been taken. Water Conservation Program will work on establishing a more positive connotation for the public. 2. We are working on building a list serve, information cards, and publications to reach the public. We will be working with NMSU-CES for help. 3. There was no clarification as to what was not rational or understandable. 4. This section has been removed from the Plan. 5. We need a Water Conservation Plan to meet the City water right permit requirements. Additionally, the City has had a WC program since 1999. Water Conservation is not a new program for the City. 6. Water Quality: Water in this area is moderately hard, which is common to deep groundwater systems. However, hardness in this area has been consistent over time. It is possible that during times of drought the characteristics of our water could change. 7. The strategic plan has directives that explain the use of reclaim and reuse water which is a new source of water.</td>
</tr>
<tr>
<td>E-mail or written comments:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Golf courses</td>
<td>Concerned about the number of golf courses in such a small radius. Suggested that City Planning re-evaluate if the income generated by more than 3 golf courses outweighs the drain on our water resources. During construction of Red Hawk Golf course they noticed many leaks in the big line running from the water hydrant to the course.</td>
<td>Currently LCU supplies water to 2 golf courses. One golf course is using nonpotable water while the other golf course is using potable water. Potable water usage is 1% (.0103) of LUC total system water.</td>
</tr>
<tr>
<td>Neighborhood Associations</td>
<td>Neighborhood association does not promote or encourage water conservation. Association restricts does not allow graywater or rainwater harvesting.</td>
<td>We have included the neighborhood associations on our list serve and will encourage associations to participate in the Lush & Lean program and other Water Conservation Programs. Currently conducted a water conservation program presentation at the recent Neighborhood Summit (February, 2012).</td>
</tr>
<tr>
<td>Communication</td>
<td>More active with water conservation tips and suggestions in the news.</td>
<td>As mentioned earlier we will be working with PIO and PR firm to promote water conservation tips.</td>
</tr>
<tr>
<td>Enforcement</td>
<td>Tougher – codes enforcement needed to be more aggressive with their citations</td>
<td>We will be working closely with codes to address water wasting. As mentioned in the Plan, Codes Enforcement takes a holistic approach combining education and outreach. We will work in unison with Codes on water conservation outreach and educational programs.</td>
</tr>
<tr>
<td>Fire hydrant flushing</td>
<td>Fill tankers with the flushed water instead of allowing it to run down the street (2 comments).</td>
<td>1. For 2011 we had 13 schedule water flushes. These flushes are required and needed to test water line pressure on the 550 plus miles of water lines under the City. The flushes can use as little as 7,500 GPM or as much as 60,000 GPM. In order to collect accurate data for water line pressure it is not possible to obstruct or collect the water. Water used for test flushing is equivalent to 0.0001 percent of total water usage on our system. 2. Fire protection and training. Currently the fire department conducts at least 1 to 3 fires or trainings each month. The fire department has taken steps to be more précis on the amount of water used for protection and training. It is very difficult to collect water from their trainings. 3. Dirty water calls requires the LCU to flush the water lines. Water being flushed due to dirty water calls includes a large amount of iron and magnesium in the water. LCU does not advise or encourage the usage of</td>
</tr>
</tbody>
</table>
this water. Adding additional iron or magnesium may damage or destroy vegetation.

| **Education** | Start a school water conservation campaign. | We will be having our first water festival March 15 at Young Park. We currently have 20 presenters and over 950 third and fourth graders attending the event. We hope to conduct the festival every year. The WC Program has taken part in several school functions (science fairs) and we are providing resources and materials to teachers. Additionally, we hope to have a Project Wet training session summer, 2012 for teachers. |
| **General Comments and Questions:** | General Comment and Concern: Since the City has sufficient water resources (45,069 acre feet of water rights) for traditional uses for the foreseeable future, that it is very close (within 8 gpcpd) to the State Engineer's 180 gpcd goal as stipulated in the West Mesa Permit, and that the City has committed itself to a reduction of residential water use for the sole purpose of protecting a single permit for 8,000 acre-feet of water rights to offset industrial uses in the West Mesa Industrial Park. That permit requires the system-wide gpcd of 180 within 20 years of issue (i.e., by 2030) and a further, unstated "aggressive" reduction within 40 years (i.e., by 2050). The City's own plan tasks itself to achieve a reduction of residential gpcd to 121 (from the current 145), but not for another 34 years (by 2045).

Concern is that in discussing the issue of water resources, the City does not present these time frames when discussing requirements, and instead provides justification for quickly meeting or exceeding the goal using such emotional issues as drought and endangered species, which do not currently affect our ground water supplies in any appreciable way, nor does there appear to be any future concerns either - at least according to the Region 11 plan, and the City's own 40-year plan. Regarding the amount of water available, I note that in several places of the various plans and reports the City states it intends to meet "additional demand that may occur over the next 40 years [i.e., the difference between the high and maximum demand

Although the West Mesa Permits specifically discuss the requirements of a water conservation plan all of the City's groundwater rights require "conservation".

The West Mesa Permits will supply water to all users within the system.

Water Conservation is a regulator requirement. It is part of the 40 Year Water Development Plan, and a condition requirement of our permit by the Office of the State Engineer.

The Water Conservation Plan is strong in education and programs. Wasting of water unconditionally requires enforcement per the Water Conservation Ordinance.

LCU will continue to study and identify potential new sources of water as needed.

LCU rates are based on revenue requirements and the cost of conducting business. LCU has designed a rate process that allows intervenors to join the filed rate case on their behalf. Additionally LCU provides support to the Rate Advisory Committee which consists of a 7 member committee that represents the residential and small business rate class in Las Cruces. It is through this process that the water rates will be evaluated and adopted.
projections - i.e., about 13,000 acre feet per year in 2045] will be met from alternative sources such as desalination, deep wells, importation, and aquifer storage and recovery." However, nowhere in any of the plans or reports are the issues and processes of these solutions addressed at all. Nor are these considered as an alternative to conservation. So, I wonder where the "big idea" in this City regarding water is. It seems that neither Council nor Staff has come forward with any plan other than to create an accelerated time line for conservation goals that rely on threatening City residents with Misdemeanor fines and incarceration for non-compliance. According to the reports, we are using conservation - and doing so in a heavy handed way - solely because it is the easiest and (supposedly) least expensive way to lower demand. However, there is an alternative to conservation measures to meet the gpcd goals, and that is to increase supply from other sources, thus reducing the amount used from current sources. Let's take desalination for example: Las Cruces uses about 20,000 acre feet of water per year today. The new desalination plant in El Paso (on Ft. Bliss) produces 25,000 acre feet per year - 175 million gallons more than we use as a City. Below our bolsons lies an entire ocean of brackish and salt water, and if we would tap into it (using infusion wells to pump the brine into dry strata), we would not need to conserve water at all - or use our fresh water resources. At the very least we could provide the "industrial water" from such a system, saving the residents from the increased cost of such a system. The point is that we are not short of water in any way; the City simply lacks the vision to provide it to the citizenry.

First comment: The Plan you are creating is to eliminate those issues which are not germane from future public presentations and justifications for the reduction in gpcd.

Second comment: The City ensure that the citizenry
understands that the residential reductions, and the associated criminalization of utility "misuse" is to accommodate industrial uses, and should the citizens complain in sufficient numbers, that the City give up the permit that requires this reduction in residential use in favor of industry. You have stated that the report due to the State Engineer will involve no further citizen input, with the exception of sending it out by email to the five people who attended your meeting in October, and myself. The rationale seems to be that the 40-year plan is inviolate, and that the report is simply a staff function. I disagree.

Third comment: The implementation of a new phase or period of the 40-year plan should include a thorough review of the 40-year plan. Since the current 40-year plan is only 3 years old, it does not seem that sufficient time has passed to conduct such a review. Which leads to the conclusion that the City is using the State Engineer's 2010 permit requirement to mask a political desire to increase water conservation, when no requirement exists in law or administration, or in nature (by depletion of water resources). Therefore, the City should of course submit the report required by the State Engineer, but pace the reduction in gpcd over the permitted period, i.e., 19 more years, not five.

Fourth comment: Many requirements this City has made of its citizens, and that is to decriminalize what are essentially civil issues. When I was the City's Airport Manager, we created a City Ordinance that established misdemeanor crimes for failure to pay rents, for example, which is a strictly civil matter in any normal democracy. I was wrong, wrong, wrong to support such a thing, and the City is now wrong, wrong, wrong to use its police powers to punish citizens for watering their plants on the wrong day. Fourth comment therefore is to limit the City's water conservation efforts to education, and to rescind Sections 28-301 through 28-306 of the proposed Plan.
Fifth comment: The artificial cost-of-service fees. Although a graduated fee structure as we currently have was designed to create voluntary conservation, steepening the fee gradient for the purposes of conservation should be only be considered as a last resort in the case of a water emergency. Just as the City's easy adoption of ordinances creating criminals out of its utility customers who forget to check the calendar or their watches; it also likes to take the easy solution of soaking (pardon the pun) small groups of citizens with use-specific taxes or fees. This violates the very concept of why we have municipal government control of necessary utilities, and that is to provide those utilities for all legal and reasonable uses, without the profit motive hurting the citizen. That social contract is violated when the government uses its taxing power to force compliance with a self-imposed requirement.

Sixth comment is to commission the appropriate plan or study to identify and exploit new sources of water, “such as desalination, deep wells, importation, and aquifer storage and recovery” as a supplement at least, or as a replacement, for the waters in the fresh water basins beneath us.

<table>
<thead>
<tr>
<th>Utilities Board Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterless Urinals</td>
</tr>
<tr>
<td>Swamp coolers</td>
</tr>
<tr>
<td>Education</td>
</tr>
</tbody>
</table>
Utilities Connection:
“Putting Your Ideas into Action” water conservation meeting TOMORROW

By Esmeralda Almanza and Suzanne Michaels

Las Cruces Utilities is tasked with the enormous responsibility of assuring that we have clean, safe water now... and in the future. Water conservation is a big key to the future, and the city department is trying to learn what is most acceptable and most do-able for Las Cruces residents. You are invited to participate in the “Putting Your Ideas into Action” community meeting tomorrow evening: Thursday, October 6, 2011 from 6:00 to 7:30 pm in City Council Chambers at City Hall 700 N. Main.

Residents' suggestions will become part of the Las Cruces Utilities official Water Conservation Plan. “The Water Conservation Plan is going to be a 20 to 30 year roadmap for us that will be updated every 5 years,” says Leeann DeMouche, Water Conservation Coordinator for Las Cruces Utilities.
One big factor that many water customers don't seem to realize is that 30-50% of our tap water is used for landscaping purposes. Reduce that usage, and you dramatically reduce your water bill, as well as preserve water for the future.

Other factors affecting water availability include population growth and drought. Water is a scarce resource and with the population growth rate in the City (31% over the last decade) residents need to be proactive.

The purpose of the meeting is to obtain community input during the initial phase of the City of Las Cruces Water Conservation Plan. Las Cruces is no stranger to water conservation; the City has a long history conserving water and today the commitment making sure we have water for the future is as strong as ever.

Las Cruces Utilities seeks to reach its water conservation decisions through a public process. The Water Conservation Plan will detail the Las Cruces Utilities water system, as well as past and projected future water use, and water conservation measures and programs.

People unable to attend the public meeting can send written comments and suggestions to Water Conservation Coordinator Leeann DeMouche at ldemouche@las-cruces.org or to P.O. Box 20000, Las Cruces, NM 88004.

For those who want to get a head start on water conservation here are some tips:

- If you water your grass and trees more heavily, but less often, this saves water and builds stronger roots.
- Water lawns during the early morning hours, or evening when temperatures and wind speeds are lowest. This reduces losses from evaporation.
- When washing a car, use soap and water from a bucket. Then, use a hose with a shut-off nozzle for rinsing.
- Run your dishwasher and washing machine only when they are full.
- Never put water down the drain when there may be another use for it such as watering a plant.
- Don’t leave the water running when brushing teeth or shaving. Get in the habit of turning off the water when it’s not being used.
You can reach Las Cruces Utilities at 528-3511 from 8 a.m.-5 p.m. Monday-Friday. Utilities Connection is submitted by Suzanne Michaels Communications, Education and Public Outreach for Las Cruces Utilities: GAS – WATER – WASTEWATER – SOLID WASTE services for almost 100,000 Las Cruces residents.
Appendix Q.

LRG-47 et al., LRG-48 et al., LRG-50 et al., LRG-1882 et al., and LRG-4278 Permits
NEW MEXICO OFFICE OF THE STATE ENGINEER
APPLICATION FOR PERMIT TO
COMBINE UNDERGROUND WATER AND ENLARGE PLACE OF USE

1. APPLICANT
Name: Jornada Water Co., Inc
Contact: Dennis J. Rogers
Work Phone: 575-524-2920
Address: 225 E. Idaho, Suite 15
City: Las Cruces
State: NM Zip: 88005

2. LOCATION OF WELLS* (A, B, C, or D required, E or F if known)

<table>
<thead>
<tr>
<th>WELLS</th>
<th>SUBDIVISION</th>
<th>SECTION</th>
<th>TOWNSHIP</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRG-47</td>
<td>SE 1/4 SE 1/4 SE 1/4</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-47-S</td>
<td>NE 1/4 NE 1/4 NE 1/4</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-47-S-2</td>
<td>NE 1/4 NE 1/4 SE 1/4</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-47-S-3</td>
<td>NE 1/4 NE 1/4 NE 1/4</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-47-S-5</td>
<td>SW 1/4 SW 1/4 NE 1/4</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-47-S-6</td>
<td>SE 1/4 NW 1/4 NE 1/4</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-935**</td>
<td>NE 1/4 NE 1/4 SE 1/4</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-6781***</td>
<td>NW 1/4 NW 1/4 NW 1/4</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
</tbody>
</table>

*The well locations are described pursuant to Proofs of Completion of Well or well logs on file with the Office of the State Engineer.
** This well is not drilled.
*** This well is not drilled. If drilled, pursuant to Permit No. LRG-6781, the point of diversion will be located as far as practical (no closer than 1,000 feet if possible) from the nearest neighboring well of other ownership, LRG-370-S-6 in particular.

A. 1/4 1/4 1/4 Section: Township: Range: N.M.P.M. in County.
B. X = _______ feet, Y = _______ feet, N.M. Coordinate System Zone in the Grant.
C. Latitude: _______ d _______ m _______ s Longitude: _______ d _______ m _______ s
D. East _______ (m), North _______ (m), UTM Zone 13, NAD (27 or 83)
E. Tract No. _______ , Map No. _______ of the Hydrographic Survey
F. Lot No. _______ , Block No. _______ of Unit/Tract _______ of the Subdivision recorded in _______ County.
G. Other:
H. Give State Engineer File Number of existing well: ________________________
I. On land owned by (required): ________________________

File Number: ________________________
Form: wr-05 page 1 of 4
3. WELL INFORMATION

<table>
<thead>
<tr>
<th>WELL</th>
<th>APPROX. DEPTH (FT.)</th>
<th>OUTSIDE DIAMETER OF CASING (IN.)</th>
<th>WELL DRILLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRG-47</td>
<td>670</td>
<td>12.75</td>
<td>Boyd and Son</td>
</tr>
<tr>
<td>LRG-47-S</td>
<td>617</td>
<td>8.63</td>
<td>Tipton Well Service</td>
</tr>
<tr>
<td>LRG-47-S-2</td>
<td>800</td>
<td>12.00</td>
<td>Johnson Drilling Co.</td>
</tr>
<tr>
<td>LRG-47-S-3</td>
<td>800</td>
<td>18.00</td>
<td>Johnson Drilling Co.</td>
</tr>
<tr>
<td>LRG-47-S-5</td>
<td>800</td>
<td>16.00</td>
<td>Johnson Drilling Co.</td>
</tr>
<tr>
<td>LRG-47-S-6</td>
<td>860</td>
<td>10.00</td>
<td>Hargraves Drilling Co.</td>
</tr>
<tr>
<td>LRG-935*</td>
<td>700</td>
<td>8.625</td>
<td>Unknown</td>
</tr>
<tr>
<td>LRG-6781*</td>
<td>1000</td>
<td>24.00</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

*Not Yet Drilled

Approximate depth ______ feet; Outside diameter of casing ______ inches.
Name of well driller and driller license number __________________________

4. QUANTITY

Consumptive Use: ______ acre-feet per annum.
Diversion Amount: ______ acre-feet per annum*

*Pursuant to Permit No. LRG-47-S-6, the diversion of water from all wells permitted under LRG-47 et al. shall not exceed a combined total of 663.0 acre-feet per annum, inclusive of 111.0 acre-feet per annum permitted under Permit No. LRG-935. Pursuant to Permit No. LRG-47-S-6, the diversion of water from LRG-935 shall not exceed 110.0 acre-feet per annum, but may be increased to 150.0 acre-feet per annum provided that water rights are acquired and transferred under separate permit to offset anticipated surface water effects of the difference of 39 acre-feet per annum. Pursuant to Permit No. LRG-6781, the diversion of water from LRG-6781 shall not exceed 185.0 acre-feet per annum, except that prior to diversion, the permittee shall acquire water rights in the amount of 9.0 acre-feet per annum and conduct transfers as necessary to satisfy the calculated maximum 100-year effect of pumping 185.0 acre-feet per annum on the neighboring surface water system. The Applicant proposes to combine these water rights.

5. PURPOSE OF USE

Other (specify): utility, subdivision, and related
Specific use: __________________________

File Number: ___________________________ Tm Number: ___________________________
NEW MEXICO OFFICE OF THE STATE ENGINEER
APPLICATION FOR PERMIT
TO COMBINE UNDERGROUND WATER

6. PLACE OF USE

Jornada Water Company service area described as follows:

<table>
<thead>
<tr>
<th>SUBDIVISION</th>
<th>SECTION</th>
<th>TOWNSHIP</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>S. of Hwy. 70-82</td>
<td>14</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>N¼</td>
<td>23</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>N½</td>
<td>24</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>W¼</td>
<td>19</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>All</td>
<td>19</td>
<td>22 South</td>
<td>3 East</td>
</tr>
<tr>
<td>S½</td>
<td>7</td>
<td>22 South</td>
<td>3 East</td>
</tr>
<tr>
<td>All</td>
<td>18</td>
<td>22 South</td>
<td>3 East</td>
</tr>
</tbody>
</table>

*The place of use set forth above reflects the following: (1) it combines the places of use set forth in Permit Nos. LRG-47 et al., LRG-935, and LRG-6781; (2) it enlarges the permitted place of use set forth in Permit Nos. LRG-47 and LRG-6781 from N½N½ Section 23, Township 22 South, Range 2 East to include all of the North ½ of Section 23, Township 22 South, Range 2 East; and (3) it enlarges the place of use to include all of Section 18, Township 22 South, Range 3 East.

_________ acres of land described as follows:

<table>
<thead>
<tr>
<th>Subdivision of Section</th>
<th>Section (Map No.)</th>
<th>Township (Tract No.)</th>
<th>Range</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Who is the owner of the land? various owners

7. ADDITIONAL STATEMENTS OR EXPLANATIONS:

This Application seeks to combine the water rights of Jornada Water Company set forth in Permit Nos. LRG-47 et al., LRG-935, and LRG-6781, and enlarge the place of use of previously permitted water rights of Jornada Water Company set forth in Permit Nos. LRG-47 et al., LRG-935, and LRG-6781 in order to serve all customers of Jornada Water Company more efficiently. The right to file such application was set forth in the Order of the State Engineer issued on January 24, 2008 in Permit No. LRG-6781.

File Number: ____________
Trm Number: ____________
Form: wr-05

page 3 of 4
NEW MEXICO OFFICE OF THE STATE ENGINEER
APPLICATION FOR PERMIT
TO COMBINE UNDERGROUND WATER

ACKNOWLEDGEMENT FOR NATURAL PERSONS

I, Dennis J. Rogers, affirm that the foregoing statements are true to the best of my knowledge and belief, By: Dennis J. Rogers for Jornada Water Co. Inc.

Applicant Signature

ACTION OF STATE ENGINEER

This application is approved/denied partially approved provided it is not exercised to the detriment of any other having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare; and further subject to the following conditions:

As per attached conditions.

Witness my hand and seal this 11th day of May, 2010

John R. D'Antonio, Jr., STATE ENGINEER

Erek H. Fuchs, M.S.
Water Resource Master District IV
Attachment
Conditions of Approval

Application for Permit to Combine Water Rights and to Enlarge Place of Use
No. LRG-47, LRG-935 and LRG-6781 Combined

1) This application is approved as follows:

Permit Number: LRG-47, LRG-935 and LRG-6781 Combined

Priority: December 31, 1960 for 552.0 acre-feet per annum of shallow groundwater as described by License no. LRG-47.

November 10, 1980 for up to 150.0 acre-feet per annum of shallow groundwater, or that amount actually shown by way of Proof of Application of Water to Beneficial Use under Permit no. LRG-935, whichever is less and further subject to previous permit conditions requiring offset of calculated surface water depletions, or as otherwise determined by order of the Third Judicial District Court, Doña Ana County, State of New Mexico in New Mexico ex rel. Office of the State Engineer v. Elephant Butte Irrigation District, et al., Case No. CV 96-888.

February 2, 1988 for up to 185.0 acre-feet per annum of shallow groundwater, or that amount actually shown by way of Proof of Application of Water to Beneficial Use under Permit no. LRG-6781, whichever is less and further subject to previous permit conditions requiring offset of calculated surface water depletions, or as otherwise determined by order of the Third Judicial District Court, Doña Ana County, State of New Mexico in New Mexico ex rel. Office of the State Engineer v. Elephant Butte Irrigation District, et al., Case No. CV 96-888.

Points of Diversion: Well LRG-47 located in the SE¼SE¼SE¼ of Section 13, Township 22 South, Range 2 East, NMPM, also described by planar coordinates X = 1,506,492; Y = 505,438 feet, NMSP, NAD 83, Central Zone.*

Well LRG-47-S located in the NE¼NE¼NE¼ of Section 13, Township 22 South, Range 2 East, NMPM, also
described by planar coordinates $X = 1,506,657; Y = 510,462$ feet, NMSP, NAD 83, Central Zone.

Well LRG-47-S-2 located in the NW¼NE¼SE¼ of Section 13, Township 22 South, Range 2 East, NMPM, also described by planar coordinates $X = 1,506,081; Y = 507,565$ feet, NMSP, NAD 83, Central Zone.

Well LRG-47-S-3 located in the NE¼NE¼NE¼ of Section 13, Township 22 South, Range 2 East, NMPM, also described by planar coordinates $X = 1,506,638; Y = 510,373$ feet, NMSP, NAD 83, Central Zone.

Well LRG-47-S-5 located in the SE¼SW¼NE¼ of Section 13, Township 22 South, Range 2 East, NMPM, also described by planar coordinates $X = 1,505,210; Y = 507,862$ feet, NMSP, NAD 83, Central Zone.

Well LRG-47-S-6 located in the SE¼NW¼NE¼ of Section 13, Township 22 South, Range 2 East, NMPM.

Well LRG-935 to be located in the NE¼NE¼SE¼ of Section 13, Township 22 South, Range 2 East, NMPM.

Well LRG-6781 to be located in the NW¼NW¼NW¼ of Section 13, Township 22 South, Range 2 East, NMPM.

* Or as otherwise determined by order of the Third Judicial District Court, Doña Ana County, State of New Mexico in New Mexico ex rel. Office of the State Engineer v. Elephant Butte Irrigation District, et al., Case No. CV 96-888

Purpose of Use: Domestic, industrial, commercial, utility, subdivision and related

Place of Use: Jornada Water Company, Inc. service encompassing all of Section 13, Township 22 South, Range 2 East; S. of Hwy. 70 within Section 14, Township 22 South, Range 2 East; N½ of Section 23, Township 22 South, Range 2 East; N½ of Section 24, Township 22 South, Range 2 East; S½ of Section 7, Township 22 South, Range 3 East; all of Sections 18 and 19, Township 22 South, Range 3 East, NMPM, or as otherwise determined by order of the Third Judicial District Court, Doña Ana County, State of New Mexico in New Mexico ex rel. Office of the State Engineer

Application for Permit to Combine Water Rights and to Enlarge Place of Use
No. LRG-47, LRG-935 and LRG-6781 Combined
Amount of Water: Provided that full offset of the calculated 100-year effect to the surface water system previously identified in permits LRG-935 and LRG-6781 is secured through proper transfer(s), up to 150.0 acre-feet per annum may be diverted under permit LRG-935 as previously allowed and 185.0 acre-feet per annum may be diverted under permit LRG-6781 as previously allowed, and when combined with 552.0 acre-feet per annum previously licensed under LRG-47, a total of 887.0 acre-feet per annum may be diverted under this permit to combine water rights. Until such time as full offset of the calculated 100-year effect to the surface water system previously identified in permits LRG-935 and LRG-6781 is secured through proper transfer(s), no more than 663.0 acre-feet per annum may be diverted under this permit. The amount of water that may be diverted is further subject to determination by order of the Third Judicial District Court, Doña Ana County, State of New Mexico in New Mexico ex rel. Office of the State Engineer v. Elephant Butte Irrigation District, et al., Case No. CV 96-888.

2) Previous permit conditions specific to pumping limitations on individual wells LRG-47 through LRG-47-S-6, well LRG-935 (not yet drilled) and well LRG-6781 (not yet drilled), including offset requirements to avoid impairment to the Rio Grande, shall remain in effect.

3) This permit shall not be exercised to the detriment of valid existing water rights, shall not be contrary to conservation of water within the state, and shall not be detrimental to the public welfare of the state of New Mexico.

4) Wells LRG-47 through LRG-47-S-6, LRG-935 (when/if drilled) and LRG-6781 (when/if drilled) shall each be equipped with a totalizing meter of a type and at a location approved by, and installed in a manner acceptable to the State Engineer. The permittee shall provide in writing the make, model, serial number, date of installation, initial reading, units, dates of recalibration, and any replacement meter used to measure the diversion of water. No water shall be diverted from any well unless equipped with a functional totalizing meter.

5) Written records of the amount of water pumped from wells LRG-47 through LRG-47-S-6, LRG-935 (when/if drilled) and LRG-6781 (when/if drilled) shall be submitted in writing to the Office of the State Engineer in Las Cruces on or before the tenth day of each month for the preceding calendar month.
6) The permittee shall utilize the highest and best technology available and economically feasible for the intended use to ensure conservation of water to the maximum extent possible.

7) Well Record(s) for wells LRG-935 and LRG-6781 shall each be filed within twenty (20) days following the drilling of each well.

8) Proof of Completion of Well for previously permitted well LRG-935 shall be filed with the Office of the State Engineer in Las Cruces on or before December 31, 2010.

9) Proof of Completion of Well or Application for Extension of Time to complete the well for previously permitted well LRG-6781, past due as of July 31, 2009, shall be filed immediately.

10) Proof of Application of Water to Beneficial Use for rights permitted under files LRG-935 and LRG-6781, herein combined with but not to be confused with rights Licensed under LRG-47, shall be filed with the Office of the State Engineer in Las Cruces on or before December 31, 2010.

Date: May 11, 2010
Erek H. Fuchs, M.S.
Basin Supervisor
Certiﬁcate and License

License No.: LRG-47

WHEREAS, on the 16th day of February 1967, Declaration of Owner of Underground Water Right No. LRG-47 was ﬁled wherein it was stated that a well located within the SE¼ SE¼ SE¼ of Section 13, Township 22 South, Range 2 East, NMPM had been used since the year 1960 for the diversion of up to 500.0 acre-feet per annum of shallow groundwater for primary water supply for public utility purposes within 211.0 acres of land located within Section 13, Township 22 South, Range 2 East, NMPM; and

WHEREAS, on the 30th day of August 1979, Declaration of Owner of Underground Water Right No. LRG-47-S was ﬁled wherein it was stated that a well located within the NE¼ NE¼ NE¼ of Section 13, Township 22 South, Range 2 East, NMPM had been used in conjunction with Well No. LRG-47 since the 6th day of August 1979 for the diversion of up to 4,200.0 acre-feet per annum of shallow groundwater for domestic water supply purposes within 1,051.0 acres of land located in Section 13, W½ of Section 19, and N½ of Section 24, Township 22 South, Range 2 East, NMPM; and

WHEREAS, on the 1st day of June 1982, Declarations of Owner of Underground Water Right No. LRG-47-Amended and LRG-47-S-Amended were ﬁled wherein it was stated that prior to the Declaration of the Lower Rio Grande Underground Water Basin by the State Engineer, it was the intent of the Declarant to divert 552.0 acre-feet per annum from Well No. LRG-47, ﬁrst used in the year 1960 and located within the SE¼ SE¼ SE¼ of Section 13, Township 22 South, Range 2 East, NMPM and Well No. LRG-
47-S, first used the 6th day of August 1978 and located in the NE¼ NE¼ NE¼ of Section 13, Township 22 South, Range 2 East, NMPM, for domestic, commercial, industrial, subdivision, and related purposes within Section 13, Section 14 (south of Hwy. 70), N½ N½ of Section 23, and N½ of Section 24, Township 22 South, Range 2 East, NMPM and the S½ of Section 7 and Section 19 Township 22 South, Range 3 East, NMPM and surrounding areas; and

WHEREAS, on the 23rd day of September 1982, after notice pursuant to statute, the State Engineer did approve Application No. LRG-47-S-2 for permit to drill supplemental Well No. LRG-47-S-2 at Lot 32 of the Hacienda Acres Subdivision in Doña Ana County, which can be further described as within the NW¼ NE¼ SE¼ of Section 13, Township 22 South, Range 2 East, NMPM, for the diversion of up to 552.0 acre-feet per annum of shallow groundwater from Well Nos. LRG-47, LRG-47-S, and LRG-47-S-2 combined for use in domestic, commercial, industrial, subdivision, and related purposes within Section 13, Section 14 (south of Hwy. 70), N½ N½ of Section 23, and N½ of Section 24, Township 22 South, Range 2 East, NMPM and the S½ of Section 7 and Section 19 Township 22 South, Range 3 East, NMPM and surrounding areas; and

WHEREAS, on the 26th day of September 1989, Proof of Completion of Well No. LRG-47-S-2 was filed; and

WHEREAS, on the 18th day of October 1991, after notice pursuant to statute, the State Engineer did approve Application No. LRG-47-S-3 for permit to drill supplemental Well No. LRG-47-S-3 within the NE¼ NE¼ NE¼ of Section 13, Township 22 South, Range 2 East, NMPM; and
WHEREAS, on the 20th day of July 1994, after notice pursuant to statute, the State Engineer did approve Application No. LRG-47-S-4 for permit use existing well LRG-4278, which is located within the NE¼ NW¼ NW¼ of Section 24, Township 22 South, Range 2 East, NMPM, as a supplemental well for the LRG-47 water right; and

WHEREAS, on the 20th day of January 1995, after notice pursuant to statute, the State Engineer did approve Application No. LRG-47-S-5 for permit to drill supplemental Well No. LRG-47-S-5 within the SE¼ SW¼ NE¼ of Section 13, Township 22 South, Range 2 East, NMPM; and

WHEREAS, on the 26th day of April 1995, the State Engineer did cancel Permit No. LRG-47-S-4 at the permittee’s request; and

WHEREAS, on the 28th day of August 1995, Proof of Completion of Well LRG-47-S-5 was filed; and

WHEREAS, on the 16th day of March 2000, Proof of Completion of Well LRG-47-S-3 was filed; and

WHEREAS, on the 27th day of January 2005, after notice pursuant to statute, the State Engineer did approve Application No. LRG-47-S-6 for permit to drill supplemental Well No. LRG-47-S-6 within the SW¼ NE¼ NE¼ or SE¼ NW¼ NE¼ of Section 13, Township 22 South, Range 2 East, NMPM; and

WHEREAS, on the 2nd day of October 2008, Final Inspection and Report of Beneficial Use for LRG-47 was filed with the State Engineer stating that during the 12 month period from January 1st, 2002 to December 31st, 2002, 568.26 acre-feet of shallow groundwater had been appropriated and beneficially used for domestic, industrial,
commercial, and subdivision and related purposes within the Jornada Water Co., Inc. service area; and

WHEREAS, on the 6th day of October 2008, Proof of Completion of Well LRG-47-S-6 was filed; and

WHEREAS, 552.0 acre-feet of shallow groundwater per annum is hereby recognized as having been diverted and beneficially used under water right LRG-47 for public water supply and related purposes.

NOW THEREFORE, I John R. D’Antonio, Jr., State Engineer of the State of New Mexico, by virtue of the authority vested in me by the laws of the State, do hereby grant to Jornada Water Company, Inc. this Certificate of Acceptance of Well Nos. LRG-47-S-2, LRG-47-S-3, LRG-47-S-5, and LRG-47-S-6 drilled under authority of Permit Nos. LRG-47-S-2, LRG-47-S-3, LRG-47-S-5, and LRG-47-S-6, and this License No. LRG-47 with a priority as of December 31, 1960 to appropriate 552.0 acre-feet of shallow groundwater per annum from the following wells:

<table>
<thead>
<tr>
<th>Wells</th>
<th>Subdivision</th>
<th>Section</th>
<th>Township</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRG-47</td>
<td>SE¼ SE¼ SE¼</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-47-S</td>
<td>NE¼ NE¼ NE¼</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-47-S-2</td>
<td>NW¼ NE¼ SE¼</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-47-S-3</td>
<td>NE¼ NE¼ NE¼</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-47-S-5</td>
<td>SE¼ SW¼ NE¼</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
<tr>
<td>LRG-47-S-6</td>
<td>SE¼ NW¼ NE¼</td>
<td>13</td>
<td>22 South</td>
<td>2 East</td>
</tr>
</tbody>
</table>

Said appropriation shall be used for public water supply and related purposes within the Jornada Water Company, Inc. service area, which is described as follows:
Same to be used as above stated and can be changed only as provided by law, and provided that the total amount of water from said wells under this license shall not exceed 552.0 acre-feet of shallow groundwater per annum measured at the wells, and further provided that this License shall not be exercised to the impairment of any other person having prior existing rights to the use of the waters of the State of New Mexico.

IN WITNESS WHEREOF, I have hereunto set my hand and official seal this 20th day of November, A.D. 2008.

John R. D'Antonio, Jr.
State Engineer

By: Calvin Chavez, District IV Supervisor
Greetings:

Enclosed is your copy of Certificate of Acceptance and License to Appropriate which has been granted by the State Engineer.

The License is the final document required on this file and should be recorded in the office of the County Clerk in the county in which the licensed lands are located.

Sincerely,

[Signature]

Linda Pilosa
(575) 524-6161

Enclosure

license
APPLICATION FOR PERMIT
SUPPLEMENTAL WELL APPLICATION
To Appropriate the Underground Waters of the State of New Mexico

Date Received: May 17, 1982

1. Name of applicant: Jornada Water Company, Inc.
 Mailing address: 2009 S. Valley Drive
 City and State: Las Cruces, New Mexico 88005

2. Source of water supply: Shallow aquifer, located in Lower Rio Grande Basin

3. The well is to be located in the SE 1/4 SW 1/4, Section 1, Township 33S
 Range 1E, N.M.P.M., or Tract No. of Map No. of the District.

4. Description of well: Name of driller unknown
 Outside Diameter of casing: 12 3/4 inches; Approximate depth to be drilled: 700 feet.

5. Quantity of water to be appropriated and beneficially used: 484 acre feet, for domestic, commercial, industrial, subdivision & related purposes.

6. Acreage to be irrigated or place of use:

<table>
<thead>
<tr>
<th>Subdivision</th>
<th>Section</th>
<th>Township</th>
<th>Range</th>
<th>Acres</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW Sec. 1, Sec. 2,</td>
<td>23S</td>
<td>1E</td>
<td>Various</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec. 3 east of Rio</td>
<td>23S</td>
<td>1E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grande, Sec. 10 east of 23S</td>
<td>23S</td>
<td>1E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rio Grande, NW Sec. 11</td>
<td>23S</td>
<td>1E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW Sec. 12</td>
<td>23S</td>
<td>1E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>And surrounding areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Additional statements or explanations: The above described proposed well will be supplemental to declared wells LRG-48 and LRG-51, both located in the SW 1/4 SE 1/4, Section 2, T23S, R1E. Diversion of water from all wells combined will not exceed 484 acre feet per annum as set forth in Amended Declarations of Intent numbered LRG-48 and LRG-51.

I, Stuart Meerscheidt, affirm that the foregoing statements are true to the best of my knowledge and belief and that development shall not commence until approval of the permit has been obtained.

Jornada Water Company, Inc., Permittee

By: Stuart Meerscheidt, President

Subscribed and sworn before me this 17th day of May, A.D., 1982.

My commission expires April 1986.

Notary Public
ACTION OF STATE ENGINEER

After notice pursuant to statute and by authority vested in me, this application is approved provided it is not exercised to the detriment of any others having existing rights; further provided that all rules and regulations of the State Engineer pertaining to the drilling of the wells be complied with; and further subject to the following conditions:

1. The total combined appropriation of water from Wells Nos. LRG-48, LRG-48-S and LRG-48-S-2 shall not exceed 484 acre-feet per annum, measured at the wells.

2. Wells Nos. LRG-48, LRG-48-S and LRG-48-S-2 shall be equipped with totalizing meter(s) of a type approved by and installed in a manner and at a location(s) acceptable to the State Engineer.

3. Records of the amount of water pumped during the preceding calendar month shall be submitted to the State Engineer Office in Las Cruces, P. O. Box 16518, Las Cruces, New Mexico 88004 on or before the 10th day of each month.

Proof of completion of well shall be filed on or before September 30, 1986.

Proof of application of water to beneficial use shall be filed on or before September 30, 1986.

Witness my hand and seal this 16th day of September, A.D., 1982.

S. E. Reynolds, State Engineer

Harold Saunders
Assistant Engineer
Water Rights Division

INSTRUCTIONS

This form shall be executed, preferably typewritten, in triplicate and shall be accompanied by a filing fee of $5.60. Each of triplicate copies must be properly signed and attested.

A separate application for permit must be filled for each well used.

Sec. 1-4—Fill out all blanks fully and accurately.

Sec. 5—Irrigation use shall be stated in acre-feet of water per acre per annum to be applied on the land. If for municipal or other purposes, state total quantity in acre feet to be used annually.

Sec. 6—Describe only the lands to be irrigated or where water will be used. If on unsurveyed lands, describe by legal subdivision "as projected" from the nearest government survey corners, or describe by meres and bounds and tie survey to some permanent, easily located natural object.

Sec. 7—If lands are irrigated from any other source, explain in this section. Give any other data necessary to fully describe water right sought.
NEW MEXICO OFFICE OF THE STATE ENGINEER

CHANGE OF OWNERSHIP OF WATER RIGHT (CORPORATION)

1. OWNER OF RECORD

Name: Jornada Water Company, Inc.
Contact: Dennis J. Rogers Work Phone: 575 524-2920
Address: 225 E. Idaho Suite 15 Home Phone:
City: Las Cruces State: NM Zip: 88005

NEW OWNER

Owner Name: Jornada Water Company, Inc.
Contact: Dennis J. Rogers Work Phone: 575 524-2920
Address: 225 E. Idaho Suite 15 Home Phone:
City: Las Cruces State: NM Zip: 88005
Owner Name: Citizens Bank of Las Cruces as Secured Party & Mortgagee
Contact: Kenneth W. Dobbs Work Phone: 575 647-4178
Address: 505 S. Main St Home Phone:
City: Las Cruces State: NM Zip: 88001

2. AMOUNT CONVEYED

State Engineer File Number: LRG-50
Sub-file Number of Cause Number
Owner of record has conveyed All of said right.
(all or part)
Consumptive Use: __ acre-feet per annum
Division Amount: 4,192.19 acre-feet per annum
Other: _______ (units)

3. PURPOSE OF USE

Commercial: X Other (specify): Subdivision & Related
Specific use: ____________________________

File Number: LRG-00050
TRN 472829
NEW MEXICO OFFICE OF THE STATE ENGINEER

CHANGE OF OWNERSHIP OF WATER RIGHT (CORPORATION)

4. PLACE OF USE

Jornada Water Service area.

<table>
<thead>
<tr>
<th>Subdivision of Section (District Or Hydrographic Survey)</th>
<th>Section</th>
<th>Township</th>
<th>Range</th>
<th>Acres</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>All or part</td>
<td>26, 27, 30-36</td>
<td>23S</td>
<td>2E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All or part</td>
<td>1-18, 21</td>
<td>24S</td>
<td>2E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All or part</td>
<td>1 & 2</td>
<td>24S</td>
<td>1E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All or part</td>
<td>4-9, 16-21</td>
<td>24S</td>
<td>3E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-30, 32, 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. WELLS TO ACCOMPANY CONVEYED RIGHT

<table>
<thead>
<tr>
<th>Well File No.</th>
<th>Subdivision</th>
<th>Section</th>
<th>Township</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRG-50</td>
<td>SW1/4SE1/4SW1/4</td>
<td>30</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S</td>
<td>NE1/4NE1/4SE1/4</td>
<td>34</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-2</td>
<td>SE1/4SE1/4SW1/4</td>
<td>30</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-3</td>
<td>NESE1/4SE1/4</td>
<td>30</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-4</td>
<td>SW1/4NE1/4SE1/4</td>
<td>33</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-5</td>
<td>SW1/4NE1/4SE1/4</td>
<td>32</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-6</td>
<td>SW1/4NE1/4SE1/4</td>
<td>33</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-7</td>
<td>SW1/4NW1/4SE1/4</td>
<td>33</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-8</td>
<td>SE1/4NE1/4SW1/4</td>
<td>30</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-9</td>
<td>SW1/4SE1/4SW1/4</td>
<td>30</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-11</td>
<td>SE1/4NW1/5SW1/4</td>
<td>33</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-12</td>
<td>NW1/4NE1/4SE1/4</td>
<td>33</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>LRG-50-S-13</td>
<td>SE1/4NE1/4NW1/4</td>
<td>6</td>
<td>24S</td>
<td>2E</td>
</tr>
</tbody>
</table>

6. CONSENT TO LAWFUL CHANGE IN PLACE AND/OR PURPOSE OF USE

(I, We) the above owner(s) of record, hereby consent to a lawful change in the place and/or purpose of use of the above-described water right: (To be completed only if it is an irrigation water right and has been conveyed separate from the land to which it was appurtenant.)

_________________________ _________________________
(Signature) (Signature)

Do Not Write Below This Line

File#LRG-00050
TRN 472829
7. ADDITIONAL STATEMENTS OR EXPLANATIONS:
The purpose and intent of this document is to reflect that Citizens Bank of Las Cruces (the "Bank") has a security interest in the assets of Jornada Water Company, Inc. ("Jornada"), including Jornada's water rights. The Bank does not own the water rights reflected in this File No. LRG-50, and would only become an owner of such rights if Jornada defaulted on its obligations to the Bank, and the Bank exercised its rights as a lienholder.

ACKNOWLEDGMENT FOR CORPORATION

[Signature]

This instrument was acknowledged before me this 14th day of January, A.D., 2011,

[Name of Corporation Acknowledging]

(State of Corporation) on behalf of said corporation.

My commission expires 01-28-13

[Notary Public]

[Signature]

ACKNOWLEDGMENT FOR CORPORATION

[Signature]

This instrument was acknowledged before me this 14th day of January, A.D., 2011,

[Name of Corporation Acknowledging]

(State of Corporation) on behalf of said corporation.

My commission expires 01-28-13

[Notary Public]
NEW MEXICO OFFICE OF THE STATE ENGINEER

CHANGE OF OWNERSHIP OF WATER RIGHT (CORPORATION)

This Change of Ownership form is hereby accepted for filing in accordance with Section 72-1-2.1, NMSA-1978 (1985 Repl. Pamp), as amended. The acceptance by the Office of the State Engineer does not constitute validation of the right conveyed.

File Number: ____________________ Trn Number: ____________________

Form: wr-02c (Corporation)
NEW MEXICO OFFICE OF THE STATE ENGINEER
APPLICATION FOR PERMIT TO CHANGE LOCATION OF WELL

1. WATER RIGHT OWNER
Name: Jornada Water Co., Inc. Work Phone: 524-2920
Contact: Dennis J. Rogers Home Phone:
Address: 225 E. Idaho, Suite 15
City: Las Cruces State: NM Zip: 88005

2. PURPOSE OF USE
Commercial: X Other (specify): subdivision related Specific use:

3. QUANTITY
Consumptive Use: ___368__ acre-feet per annum
Diversion Amount: ______ acre-feet per annum

4. PLACE OF USE
________ acres of land described as follows:

<table>
<thead>
<tr>
<th>Subdivision of Section</th>
<th>Section</th>
<th>Township</th>
<th>Range</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las Alturas area</td>
<td>34</td>
<td>235</td>
<td>2E</td>
<td>640 approx.</td>
</tr>
</tbody>
</table>

Who is the owner of the land? We have a utility easement on Lot 203 (currently owned by Robert Byrd) of the Las Alturas Estates Subdivision. Plat of survey and Warranty Deed are attached.
NEW MEXICO OFFICE OF THE STATE ENGINEER
APPLICATION FOR PERMIT TO CHANGE LOCATION OF WELL

5. CHANGE FROM
A. LOCATION OF WELL (Location a, b, c, d required, e or f if known)
 a. ___1/4 SE_1/4 NW_1/4 Section: 34 Township: 23S Range: 2E N.M.P.M.
 in Dona Ana County.
 b. X = 352,750 feet, Y = 461,040 feet, N.M. Coordinate System
 U.S.G.S. Quad Map
 c. Latitude: ___d__ m____ s Longitude: ___d__ m____ s
 d. East ___ (m), North ___ (m), UTM Zone 13, NAD ___ (27 or 83)
 e. Tract No. ___, Map No. ___ of the ________ Hydrographic Survey
 f. Lot No. ___, Block No. ___ of Unit/Tract __________ of the
 __________ Subdivision recorded in _________ County.
 g. Other: __
 h. Give State Engineer File Number of existing well: LRG-1882-S-2
 i. On land owned by (required): Easement attached
 j. Is well to be plugged or capped? yes If not, state for what use
 retained: __

Do Not Write Below This Line
NEW MEXICO OFFICE OF THE STATE ENGINEER
APPLICATION FOR PERMIT TO CHANGE LOCATION OF WELL

6. CHANGE TO

A. LOCATION OF WELL (Location a, b, c, d required, e or f if known)
 a. __1/4 SE 1/4 NW 1/4 Section: __ Township: 23S Range: 2E N.M.P.M. in __ Dona Ana County.
 b. X = 352,840 feet, Y = 461,040 feet, N.M. Coordinate System
 U.S.G.S. Quad Map Zone in the __________ x 1,493,084 y: 961,105 nm State Plane Central
 Grant.
 c. Latitude: ___ d ___ m ___ s Longitude: ___ d ___ m ___ s
 d. East ___ (m), North ___ (m), UTM Zone 13, NAD ___ (27 or 83)
 e. Tract No. __, Map No. __ of the ________ Hydrographic Survey
 f. Lot No. __, Block No. ___ of Unit/Tract __________ of the __________ Hydrographic Survey
 Tract No. __, Map No. __ of the ________ Hydrographic Survey
 Subdivision recorded in __________ County.
 g. Other:
 h. Give State Engineer File Number of existing well: ____________
 i. On land owned by (required): easement attached
 j. If new well, give approximate depth(if known) ___ feet; Outside diameter of casing 8 inches. Name of driller and license number (if known) Hargraves Drilling

7. REASON FOR CHANGE

Application is made to change location of well for the following reasons: LRG-1882-S-2 well screen appears to have collapsed. This well is a major source to the residents in this area and an immediate replacement is being requested.

8. ADDITIONAL STATEMENTS OR EXPLANATIONS:

__
__
__
__
__
__
__
__

Do Not Write Below This Line
NEW MEXICO OFFICE OF THE STATE ENGINEER
APPLICATION FOR PERMIT TO CHANGE LOCATION OF WELL

ACKNOWLEDGEMENT

(I, We) [Name of President/President's Name]
(Please Print)

foregoing statements are true to the best of [my/our] knowledge and belief.

Jornada Water Co., Inc.
Applicant Signature

ACTION OF STATE ENGINEER

This application is approved/denied/partially approved provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare; and further subject to the following conditions:

[Attached Conditions]

Witness my hand and seal this [Date]

JUNE 20 08

JOHN R. D'ANTONIO, JR., STATE ENGINEER
State Engineer

BY: CHERYL THACKER, Water Resource Specialist

Do Not Write Below This Line

File Number: TRN 401914
Form: wr-06 page 4 of 4
Attachment

Conditions of Approval

Application for Permit to Change Location of Well

File No.: LRG-1882

1) This application is approved as follows:

- **Permit Number:** LRG-1882 POD4
- **Priority:** June 30, 1968 or as otherwise determined by Order of the Third Judicial District Court, Doña Ana County, State of New Mexico in *New Mexico ex rel. Office of the State Engineer v. Elephant Butte Irrigation District et al* Case No. CV 96-888.
- **Source:** Shallow groundwater of the Lower Rio Grande Underground Water Basin
- **Points of Diversion:**
 - LRG-1882 located at X = 1,492,535 Y = 462,417 NAD 1983 State Plane New Mexico Central FIPS 3002 Feet
 - LRG-1882-S located at X = 1,492,618 Y = 462,364 NAD 1983 State Plane New Mexico Central FIPS 3002 Feet
 - LRG-1882 POD4 located at X = 1,493,084 Y = 461,105 NAD 1983 State Plane New Mexico Central FIPS 3002 Feet
- **Purpose of Use:** Municipal and related purposes within the Las Alturas Estates Subdivision
- **Place of Use:** Las Alturas Estates Subdivision located in projected Sections 27, 34 and 35, Township 23 South, Range 2 East, NM PMS as previously permitted or as otherwise determined by Order of the Third Judicial District Court, Doña Ana County, State of New Mexico in *New Mexico ex rel. Office of the State Engineer v. Elephant Butte Irrigation District et al* Case No. CV 96-888.
- **Amount of Water:** The diversion of water from wells LRG-1882, LRG-1882-S and LRG-1882 POD4 shall not exceed 231.89 acre-feet per annum reflecting the maximum beneficial use of water to date under this right; however, may be
increased up to 338.0 acre-feet per annum from all wells combined as previously permitted provided that prior to increasing diversions, the permittee submits to the State Engineer, and the State Engineer approves, a schedule for the acquisition of replacement surface water to prevent impairment of surface water rights senior to the priority date of water rights developed under this permit and to allow water rights to continue to be exercised out of priority in the event of a priority call. Acquisition required by the schedule for a given year shall be in an amount determined by the State Engineer sufficient to replace the depletions to surface water and such acquisitions shall be made by the beginning of that year. An effluent return flow plan may be submitted to the State Engineer, which if acceptable, may be considered for partial replacement of surface water depletions through the discharge of treated effluent to the Rio Grande stream, but shall not be the basis for requesting an increase in the maximum diversion amount of 338.0 acre-feet per annum under this permit.

2) This permit shall not be exercised to the detriment of valid existing water rights, shall not be contrary to conservation of water within the state and shall not be detrimental to the public welfare of the state of New Mexico.

3) The permittee shall utilize the highest and best technology available and economically feasible for the intended use to ensure conservation of water to the maximum practical extent.

4) Wells LRG-1882, LRG-1882-S and LRG-1882 POD4 shall each be equipped with a totalizing meter of a type and at a location approved by and installed in a manner acceptable to the State Engineer. The permittee shall provide in writing the make, model, serial number, date of installation, initial reading, units, and dates of recalibration of each meter, and any replacement meter used to measure the diversion of water. No water shall be diverted from any well unless equipped with a functional totalizing meter.

5) Written records of the amount of water pumped from wells LRG-1882, LRG-1882-S and LRG-1882 POD4 shall be submitted in writing to the Office of the State Engineer in Las Cruces on or before the tenth day of each month for the preceding calendar month.

6) A well record for new well LRG-1882 POD4 shall be filed with the Office of the State Engineer in Las Cruces within twenty (20) days of drilling the well.
7) Proof of Completion of Well LRG-1882 POD4 shall be filed with the Office of the State Engineer in Las Cruces on or before May 30, 2010.

8) Proof of Application of Water to Beneficial Use shall be filed with the Office of the State Engineer in Las Cruces on or before January 31, 2009.

Date: 1/23/08

Cheryl S. Tacker
Water Resource Specialist Senior
WRAP, District IV
PLAT OF SURVEY OF A 0.104 ACRE TRACT
AS PART OF LOT 203, LAS ALTUAS ESTATES PLAT NO. 5
AS FILED MAY 1, 1978 IN PLAT RECORD 12, PAGES 185-196, DONA ANA COUNTY RECORDS
SOUTHEAST OF LAS CRUCES, DONA ANA COUNTY, NEW MEXICO
SCALE: 1" = 50'

LOT 203

2.411 ACRES

LOT 204

JUN 3 1987

BOTSFORD

BOTSFORD LAND SURVEYING, INC.
142 S. Water Street
LAS CRUCES, NM 88001
Phone 525-3444

PROPERTY IS NOT IN A FLOOD ZONE AS PER FLOOD INSURANCE RATE MAPS OF DONA ANA COUNTY DATED JANUARY 11, 1978.

I HEREBY CERTIFY THAT I AM A REGISTERED LAND SURVEYOR IN THE STATE OF NEW MEXICO AND THAT THIS PLAT IS BASED ON THE BEST OF MY KNOWLEDGE AND BELIEF AND THAT IT MEETS MINIMUM STANDARDS FOR LAND SURVEYS AS SET FORTH BY THE NEW MEXICO BOARD OF REGISTRATION FOR PROFESSIONAL ENGINEERS AND LAND SURVEYORS AND THAT IT IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

JAMES A. BOTSFORD
REGISTERED LAND SURVEYOR

RECEIVED
12/01/2014
5:04 AM
Declarations of Owner of Underground Water Right
LAS CRUCES

Lower Rio Grande

Declaration No. LRG-4278

STATEMENT

1. Name of Declare: Edward M. Greene
Mailing Address: 1936 Parr Ann
Las Cruces

County of: Dona Ana
State of New Mexico 88001

2. Source of water supply: Shallow Water

3. Describe well location under one of the following subheadings:

<table>
<thead>
<tr>
<th>N/N</th>
<th>N/N</th>
<th>S/W</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>225</td>
<td>R/E</td>
<td>2E</td>
</tr>
</tbody>
</table>

Tract No. of Map No. of the

X = feet, Y = feet, N. M. Coordinate System

Zone

On land owned by Edward M. & Barbara A. Greene

4. Description of well: Date drilled: 1/15/76
driller: Aqua Drilling
Depth: 600 feet

outside diameter of casing: 8.0 inches; original capacity: 35-40 gal. per min.; present capacity: 35-40 gal. per min.
pumping lift: 550 feet; static water level: 356 feet (below) land surface

machine, type, horsepower, etc., of power plant: 10 H.P.

Fractional or percentage interest claimed in well: 100%

5. Quantity of water appropriated and beneficially used:

<table>
<thead>
<tr>
<th>Acres</th>
<th>Subdivision</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Mesa Grande Sub.</td>
</tr>
</tbody>
</table>

6. Acreage actually irrigated:

<table>
<thead>
<tr>
<th>Subdivision</th>
<th>Sec.</th>
<th>Twp.</th>
<th>Range</th>
<th>Irrigated</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesa Grande Sub.</td>
<td>14</td>
<td>225</td>
<td>2E</td>
<td>60</td>
<td>Ed Greene</td>
</tr>
</tbody>
</table>

(Notes: Location of well and acreage actually irrigated must be shown on plan on reverse side.)

7. Water was first applied to beneficial use: 5
month, 15 day, 76 year

and since that time has been used fully and continuously on all of the above described lands or for the above described purposes except as follows:

He took an option on the well in October 1979 to have a backup for the subdivision. The original owner of the well was farming 60 acres, but was selling off the land and knew sometime in the future he would not need that much water at which time we knew we would need additional water for our development.

8. Additional statements or explanations:

I, Edward M. Greene, being first duly sworn upon my oath, do deprecate and say that the above is a full and complete statement prepared in accordance with the instructions on the reverse side of this form and submitted in evidence of ownership of a valid underground water right, that I have carefully

check and all of the items contained therein and that the same are true to the best of my knowledge and belief.

OFFICIAL SEAL

Notary Public - New Mexico

Subscribed to me and sworn to me this 15th day of March, A.D. 1983

My commission expires ________________________
Locate well and areas actually irrigated as accurately as possible on following plat:

Section (s) _______ Township _______ Range _______

INSTRUCTIONS

Declaration shall be executed (preferably typewritten) in triplicate and must be accompanied by a $1.00 filing fee. Each of triplicate copies must be properly signed and attested.

A separate declaration must be filed for each well in use.

All blanks shall be filled out fully. Required information which cannot be sworn to by declarant shall be supplied by affidavit of person or persons familiar with the facts and shall be submitted herewith.

Sec. 1-3. Complete all blanks.

Sec. 4. Fill out all blanks applicable as fully as possible.

Sec. 5. Irrigation use shall be stated in acre feet of water per acre per year applied on the land. If used for domestic, municipal, or other purposes, state total quantity in acre feet used annually.

Sec. 6. Describe only the acreage actually irrigated. When necessary to clearly define irrigated acreages, describe to nearest 1/4 acre subdivision. If located on unsurveyed lands, describe by legal description "as projected" from the nearest government survey corners, or describe by metes and bounds and tie survey to some permanent, easily-located natural object.

Sec. 7. Explain and give dates as nearly as possible of any years when all or part of acreage claimed was not irrigated.

Sec. 8. If well irrigates or supplies supplemental water to any other land than that described above, or if land is also irrigated from any other source, explain under this section. Give any other data necessary to fully describe water right.

If additional space is necessary, use a separate sheet or sheets and attach securely hereto.
1. NAME OF WATER RIGHT OWNER OF RECORD: EDWARD M. GREENE VIA. COUNCILE CARPENTER
 Mailing Address: 936 PERRI AVE. /3390 MORNINGSIDE
 City, State, Zip Code: LAS CRUCES, N.M. 88001

 NAME OF NEW OWNER: JORNADA WATER CO., INC.
 Mailing Address: 225 EAST IDAHO SUITE 15
 City, State, Zip Code: LAS CRUCES, N.M. 88001

2. The water right is set forth in State Engineer Office File Number: LCG-4278
 Subfile Number: __________________________ of Cause Number: ________________________
 Water right owner of record has conveyed __________________ of said right.
 (all or part)

3. RECORDED PURPOSE OF USE OF WATER RIGHT AND AMOUNT CONVEYED: (Check appropriate use)
 A. DOMESTIC B. LIVESTOCK C. IRRIGATION D. MUNICIPAL E. INDUSTRIAL
 F. COMMERCIAL G. OTHER (specify) SUBDIVISION & RELATED
 AMOUNT CONVEYED: 60.0 ACRE-FEET PER ANNUM

4. IRRIGATION: The conveyed water right is appurtenant to lands described as follows (describe only lands with actual water right and diversion as that amount of water measured at the well and/or farm headgate):
 SUBDIVISION SECTION TOWNSHIP RANGE ACREAGE DIVERSION PRIORITY
 __________________________ __________________________ __________________________ __________________________ __________________________ __________________________
 (District or Hydrographic Survey) (Map No.) (Tract No.) (Acre Feet Per Annum)
 Total: __________________________

5. DESIGNATE WELLS TO ACCOMPANY THE CONVEYED RIGHT: (To be completed if conveyance involves only a part of a groundwater right):
 WELL FILE NO. SUBDIVISION SECTION TOWNSHIP RANGE
 LCG-4278 NW1/4NW1/4NW1/4 24 22 S. 2 E.
 __________________________ __________________________ __________________________ __________________________ __________________________
 __________________________ __________________________ __________________________ __________________________ __________________________
 __________________________ __________________________ __________________________ __________________________ __________________________
 __________________________ __________________________ __________________________ __________________________ __________________________

6. I HEREBY CONSENT TO A LAWFUL CHANGE IN THE PLACE AND/OR PURPOSE OF USE OF THE ABOVE-DESCRIBED WATER RIGHT: (To be completed if water right described above is a right for irrigation purposes and has been conveyed separate from the land to which it is appurtenant.)

(continued on back)
ACKNOWLEDGMENT FOR NATURAL PERSONS

State of (New Mexico)
County of (Dona Ana) ss.
The foregoing instrument was acknowledged before me this 20th day of May, 19__.
by ____________________________
(Name of Person Acknowledging)
My commission expires: ___________
(Seal)

ACKNOWLEDGMENT FOR CORPORATION

State of () ss.
County of ()
The foregoing instrument was acknowledged before me this day of , 19__.
by ____________________________
(Name of Corporation Acknowledging)
My commission expires: ___________
(Seal)

INSTRUCTIONS

1. The Water Right Owner of Record is the owner as recorded in the State Engineer Office.

2. This form shall be completed either by conveyee (seller) or by the new owner and shall be accompanied by a filing fee as set by the clerk of the county or counties in which the water right is located. If completed by the new owner, it shall be accompanied by a copy of the recorded deed or other recorded instrument of conveyance.

3. A separate Change of Ownership of Water Right form shall be filed for each water right recorded in the State Engineer Office by either: A. Permit or License, B. Declaration, or C. Adjudication. Change of Ownership is not required when the water right has not been recorded in the State Engineer Office.

4. If change of ownership is for domestic use only, (permitted under NMSA §72-12-1 1978) complete items 1, 2 and 3. If change of ownership of water right is for any other use, complete items 1, 2, 3, 4, 5 and 6, if applicable.

5. The completed form shall be filed with the county clerk by the new owner of water right indicated on Item 1 of this form.

6. Upon filing the Change of Ownership form, the County Clerk will forward an endorsed copy of the form to the State Engineer Office, P.O. Box 25102, Santa Fe, New Mexico 87504-5102.