What is a weed?
- A plant out of place
- Any plant that is objectionable or interferes with the activities or welfare of man (WSSA)
 - Often objectionable because they interfere

Developing weed management strategy
- Determine the specific objectives of your area
- Identifying weed and desirable plant species
- Management
 - Knowledge of tools available to you
 - Keep the weeds ‘off balance’
- Evaluation of control methods
 - Impacts
 - Success
 - Integrated Weed Management

Weed Management Tools
- How do I achieve successful control?
 - Early bird catches the worm...or in this case, the weed!
 - The younger the plant the ‘easier’ the control
 - Young plants haven’t developed structures that make weed development and growth successful
 - Seed development
 - Develop weed management strategy

Integrated weed management (IWM)
- Multiple control options available
 - No single weed control option will be successful!
- Combinations of good management practices are required for effective control
 - Mechanical + cultural + herbicides
- Strategies should be specific to target weed
 - Accurate identification

Weed Management Tools
- How do I manage weeds?
 - Prevention
 - Plant certified seed, clean equipment, weed control prior to seed production
 - Mechanical/Physical
 - Tillage, hoeing, hand pulling, mowing, mulching, weed blankets, etc.
 - Cultural
 - Reduce weeds by managing desired plants
 - Irrigation, fertilization, mowing (benefit of lawn), planting timing
 - Biological
 - Insects or fungi that work negatively on weed
 - Chemical
 - The label is LAW!
 - Effective means of control when used according to the label
 - Resistance
 - Offsite damage
Things to consider with Herbicides

- Chemicals used to kill or suppress unwanted vegetation
 - Can be synthetic or organic
- Primary method of weed control in multiple cropping systems
 - Inexpensive (can help reduce production costs)
 - Greater flexibility in timing of weed control
 - Results are often quick and may offer extended control
- Helpful tool
 - Herbicides alone will not eradicate weeds
- Success is always dependent on...
 - Applications in accordance with the label
 - Weed identification

Timing of application

- Preemergence (PRE)
 - Applied before the weed emerges from soil
 - Can be applied either before or after desired crop
 - Read the label
 - Requires incorporation into the soil
 - Irrigation, shallow tillage
- Postemergence (POST)
 - Applied after weeds have emerged
 - Allow to dry, no soil incorporation

Preemergence herbicides (PRE)

PRE herbicides do not prevent the weed seed from germinating, they control weeds as they grow through the herbicide treated zone.

Postemergence (POST) weed control

- Treat only areas infested with weeds
 - POST – IWM approach
 - PRE – blanket application

- Used to control weeds that have already germinated
 - At this point most PRE herbicides are useless

Other PRE options

*pendimethalin (Pendulum Aquacap) is a broad spectrum PRE active ingredient

Postemergence (POST) weed control

- Sprays give better control than granules
- Avoid extreme temperatures. Apply when temperatures are between 40 and 85°F and sunny
- Typically need a rain free period of at least 6 hours
- Do not apply to stressed desirable plants
 - Also stressed weeds
- Check the label for instructions on replanting/reseeding application areas
- Multiple active ingredients available for use
 - Dependent on cropping system, site objectives, and accurate weed identification
Other POST options

Weed Control for the Garden and Landscape Extension Publication
Purdue University

Organic Weed Control

- Early detection (scouting)
- Dense vegetation, mulching, etc.
- Mechanical/physical removal
- Soil solarization
- Weed seed germination

Organic Herbicides

- Generally fall under 7 product categories
 - Natural acids
 - Vinegar (acetic acid), citric acids
 - Phytotoxic oils
 - d-limonene, clove oil, rosemary oil
 - Corn gluten meal
 - Preemergent
 - Herbicidal soaps
 - Pelargonic acids, ammoniated soap of fatty acids
 - Salt-based herbicides
 - Potassium or ammonium salts of fatty acids (aka soap salts)
 - Iron-based herbicides
 - Iron HEDTA
 - Combination products

Organic Herbicides

- Things to consider
 - You are still applying a herbicide
 - Must have a viable label with directions for safe and effective application
 - Generally considered to be contact herbicides
 - Injure the plant by burning plant cuticle or disrupting cell walls (plants lose too much water and die)
 - Chelated iron products are taken up by the plant
 - Non-selective
 - Not as effective as synthetic counterparts
 - Important to target young weeds
 - Must be combined with other IPM practices
 - Expensive
Why identify?

- Annuals vs. Perennials
 - Pre vs. Post control options vary
- Variation in response to management
 - Select the right tool for success
- Life cycle, flowering, seed production
 - Timing of management is essential

Why are weeds successful?

- Rapid colonization of disturbed areas
- Very rapid growth
- Self compatible
- Very high seed production
- Seed dormancy
- Vegetative reproductive structures
- Seed dispersal mechanisms

Vegetative Reproductive Structures

- Bulbs/tubers
- Tillers
- Creeping stems
 - Rhizomes
 - Stolons

Broadleaf identification:

- Key structures on a broadleaf weed
 - Node
 - Internode
 - Leaf stems
 - Petiole
 - Sessile
 - Leaf features
 - Shape
 - Veins
 - Edges (margin)

Grass identification: Vernation

- Folded
- Rolled

[Images of broadleaf and grass identification structures]
Grass identification: Ligule

- Collar
 - Found at junction between leaf blade and stem sheath
 - Essential ID characteristic
 - Absence of seedhead
 - Ligule (found at the back of the collar)
 - Membranous
 - Hairy
 - Absent

Zoysiagrass
Barnyardgrass
Cheatgrass

Weed ID is essential for effective management

Weeds are categorized into one of four lifecycles

1. **Summer annuals**
 - Summer annuals germinate in the spring when soil temperatures reach about 55-65°F, flower in the summer and die in the fall at first frost

2. **Winter annuals**
 - Winter annuals germinate in the fall (55-65°F), grow until spring and die during late spring or early summer

3. **Biennials**
 - Life cycle lasts two years. Few examples

4. **Perennials**
 - Perennial weeds are capable of living more than two years

Optimum control timings depends on weed lifecycle

- **Winter annuals**
 - Sept. – Nov. optimum control window
 - Should I apply a herbicide in the spring?
- **Summer annuals**
 - When at seedling stage (May-June)
- **Biennials**
 - When in first growing season (rosette stage)
 - Only reproduces by seed
- **Perennials**
 - Fall management works best!
 - Late Sept. through mid-Nov. is best
 - Depending on temperatures
 - Second best timing is mid-March through May

Annual weed management

- Prevent seeds from entering/forming
- Easier to manage weeds when they are young
- Competition from desirables can be VERY EFFECTIVE
 - Limit the amount of open space for germinating weeds
 - Turf, xeriscapes, garden mulch, etc.
- Wide range of tools available for management

Perennial weed management

- Prevent establishment
 - Seeds from forming
 - Continually reduce stored energy in perennial vegetative structures
 - Ex: digging up taproots
- **EARLY DETECTION AND RAPID RESPONSE!!**
- Thorough understanding of biology
 - Optimize management methods
- IWM is essential for adequate management
- Long-term management required if population is allowed to establish
Summer annuals include:

- Puncture vine
- Prostrate spurge

Puncture vine (Tribulus terrestris)

- Identifying features:
 - Prostrate, mat-forming growth habit
 - Leaves pinnately divided into 4-8 pairs of leaflets per stem
 - Leaves and stems are covered in hairs
 - Leaf stems arranged in a zig-zag pattern on main stem
 - Stems can be brown or reddish in color
 - Yellow, butter-cup like flowers
 - Produces strong, tack-like fruits (goatheads)
 - Leaves toxic to livestock

Prostrate spurge (Euphorbia maculate)

- Identifying features:
 - Mat-forming
 - Oval-shaped leaves
 - Opposite orientation on stem
 - Maroon splotch on upper surface
 - Stem exudes milky sap when broken
 - Small cluster of flowers
 - Produces viable seed within weeks of germination

Winter annuals include:

- Cheatgrass
- London rocket

London Rocket (Sisymbrium irio)

- Winter annual:
 - Young plants are a basal rosette
 - Smooth, spear-shaped leaves that are deeply lobed
 - Mature leaves can be spade-shaped
 - Upright flowering stems develop at maturity
 - Small clusters of pale yellow flowers
 - Fruits are long, thin tubular seed pods

Cheatgrass (Bromus teechtorum)

- Identifying features:
 - Aka: downy brome
 - All leaves and stems covered in soft, dense hair
 - Papery thin, ragged edged ligule
 - Inflorescence is dense, slender, and usually drooping
 - Can produce 300 seed per plant or more
 - Seed has awns that can be 3/8 to 5/8” long
 - Awns can turn purplish at maturity

- Identifying features:
 - Prostrate, mat-forming growth habit
 - Leaves pinnately divided into 4-8 pairs of leaflets per stem
 - Leaves and stems are covered in hairs
 - Leaf stems arranged in a zig-zag pattern on main stem
 - Stems can be brown or reddish in color
 - Yellow, butter-cup like flowers
 - Produces strong, tack-like fruits (goatheads)
 - Leaves toxic to livestock

Winter annuals include:

- Cheatgrass
- London rocket

London Rocket (Sisymbrium irio)

- Winter annual:
 - Young plants are a basal rosette
 - Smooth, spear-shaped leaves that are deeply lobed
 - Mature leaves can be spade-shaped
 - Upright flowering stems develop at maturity
 - Small clusters of pale yellow flowers
 - Fruits are long, thin tubular seed pods

Cheatgrass (Bromus teechtorum)

- Identifying features:
 - Aka: downy brome
 - All leaves and stems covered in soft, dense hair
 - Papery thin, ragged edged ligule
 - Inflorescence is dense, slender, and usually drooping
 - Can produce 300 seed per plant or more
 - Seed has awns that can be 3/8 to 5/8” long
 - Awns can turn purplish at maturity
Perennial weeds include:

- Dandelion
- Field bindweed

Dandelion (Taraxacum officinale)

- Identifying features:
 - Deeply toothed leaf margins
 - Older teeth point towards leaf base
 - Milky sap
 - Long, fleshy taproot
 - Bright yellow flowers on long stalks
 - White puff-ball seedhead

Field bindweed (Convolvulus arvensis)

- Identifying features:
 - Slender climbing viney growth
 - Spreads by rhizomes
 - Smooth stems grow along ground or climb vegetation/objects
 - Arrow-head shaped leaves
 - Funnel shaped flowers (white to pink)

Don’t be afraid to ask for help

The moral of the story:
In a world full of pansies, be a Dandelion!!!