Selecting, Planting and Staking Trees

John M. White
Garden Curator
Chihuahuan Desert Gardens
El Paso, Tx.
jmwhite@utep.edu
Why do trees and shrubs fail?

- Poor production
- Poor selection
- Poor timing
- Poor planting
- Poor irrigation
- Poor maintenance
- Diseases, pests, abiotic stresses
Plant Selection

• Site analysis
 – Space above and below ground

• Environment
 – Climate zone
 – Exposure
 – Dry/wet locations
Plant Selection

• Soil
 – Depth (can root to depth of 36”)
 – Texture (sand, silt, clay)
 – Compaction/drainage
 – pH (alkalinity/acidity)
 – Salinity
 – Fertility/toxicity
Plant Function

- Plant size and shape
- Shading
- Screening
Selecting Plants

- Average size
- **Vigorous, healthy shoots**
 - Appropriate size canopy with healthy foliage
 - No evidence of insects or disease on leaves and stems
 - No physical damage on leaves and stems
- Avoid closely staked trees
- Good taper of trunk
- Central leader or multiple stems
What is Taper?

Taper = trunk caliper is thicker at the base of a tree and decreases further up the trunk.

Why is taper important?

• Stabilizes trunk to hold crown and withstand wind.
• Leaving lower temporary lateral branches on trunk and allowing the trunk to move in the wind promotes caliper and taper.
Selecting plants

- Natural shape of trees – No heading back or severe pruning
- Bare root plants should still be dormant, not leaved out and should have fibrous, fresh, clean roots
- Plants grown locally or in a climate similar to the one where they will be established may adjust more rapidly and may perform better.
Selecting Plants

Vigorous and healthy root system
- Avoid root bound plants
- Root ball should hold firmly together
- Root ball should be moist
- Container should be full of media and not partially full
Selecting Plants
Planting Specifications

- Shallow wide hole as deep as the root ball with rough sloping walls
- Only mineral soil, no organic amendments in back fill
- Root ball on undisturbed soil
- Organic mulch on soil surface
- No unnecessary pruning
- Stake only if necessary
- Plant when temperatures favor plant establishment
Basis for Planting Specifications

- Root system distribution
- Root crown susceptibility
- Soil interfaces
- Ineffective organic amendments
- Benefits of organic mulches
- Effects of pruning at transplanting
- Hazards of staking
Tree root system

- Tap roots – usually non-existent in nursery grown stock
- Shallow, wide roots – 1.5 to 3 times canopy width
- Distribution is limited by genetics and soil compaction
- A wide planting hole as deep as the root ball promotes good root establishment
Root Crown Susceptibility

- Trunk bark is more vulnerable to soil related problems and wetness than root bark.
- Settling deeper into the soil exposes the trunk to these problems – a leading cause of failure.
- Plant in a shallow hole to avoid settling and trunks buried in soil.
Severely root bound tree

Root growth of oak one year after planting
Soil Interface

- Roots will not easily penetrate dense clay or compacted soils
- The sides of the planting hole should be roughened to facilitate root penetration
- Going from ‘organic’ to clay soils can present problems with establishment
Failure of Bottle Tree

- Planted from 15 gal. container
- Blew down after 5 years
- 24 ft. tall, 4” trunk caliper at 4.5 ft. above the ground
Finishing Planting

- Cover root ball with no more than 1” of soil.
- Watering plants in immediately after planting settles soil and prevents root ball from drying out.
Benefits of Organic Mulches

- Reduces evaporation
- Reduces weed growth
- Insulates soil surface
- Recycles nutrients
- Produces humus
- Promotes root growth
- Promotes trunk growth
Applying mulch around a tree

Keep away from base of trunk
Apply 2-3 inches thick
Apply to drip line of tree or further out
Effects of Pruning

- Reduces new root growth
- Reduces trunk growth and tree stability
- Transplants should only have dead, damaged, or crossing branches removed
Reasons for Staking*

- Anchorage
- Support
- Protection

*Stake only if necessary

Remove stakes after 1 – 2 seasons
Staking for Anchorage

- Keep root ball from moving until new roots grow into surrounding soil
 - Full or over grown trees with small root balls
 - Wet or loose soils
 - Windy sites
Staking for Support

- Keep tree straight in excessive wind or until trunk is strong enough

- Weak trunks without taper

- Tall trees without bottom branches

- Species with flexible trunks (eucalyptus, oleander standard trees, shoestring acacia)
Staking for Protection

■ A barrier around the trunk protects the tree from vehicles, humans, animals, equipment and vandals. These barriers are not attached to the tree trunk.

■ 3 or 4 short stakes outside of the planted root ball

■ Sturdy metal frame around the outside of the trunk.
Effects of Staking on Plants

A staked versus un-staked tree will:

- Grow taller
- Grow away from the stake if tightly secured
- Grow less in caliper near the ground
- May produce a decreased taper
- Is unable to sway in wind
- Have a greater potential for damage from stakes and ties
Above Ground Staking

Install tie at lowest height possible on the trunk that keeps the leader upright, while allowing maximum movement of the crown.
Tie Materials

should be wide, smooth, flexible, biodegradable

Desirable materials

- Elastic webbing
- Polypropylene straps
- Flexible tubing

Undesirable materials

- Wire covered with irrigation tubing
- Electrical wire, rope, string wire
Below Ground Staking

In the ground

In a planter
- Stakes parallel to the street are not always perpendicular to prevailing winds

- Nursery stake needs to be removed

- Lower branches will promote taper

- Stakes may be too tall
Summary

Keys to Successful Tree Establishment

• Plant Selection
 – Right plant for right place
 – Healthy roots and shoots
 – Minimal or no staking
 – Locally grown or adapted to local climate
Summary

Keys to Successful Tree Establishment

- Planting
 - Planting hole should be no deeper than the root ball, 3-4 times as wide, with rough sides
 - No organic amendments in backfill
 - Remove nursery stake at planting
 - Cover root ball lightly with native soil
 - Irrigate immediately after planting
Summary
Keys to Successful Tree Establishment

- Staking
 - Stake only if necessary
 - Use correct staking technique and materials
 - Inspect stakes and ties routinely
 - Remove within two growing seasons
By following the guidelines for selecting, planting, and staking, trees are ready to successfully establish and thrive in the landscape.
Resources

• Books
 • Pruning, Planting & Care by Eric A. Johnson
 • Trees for Urban & Suburban Landscapes by Edward F. Gilman.

• Websites
 • Plant Selection and Selecting Your Plants (http://ag.arizona.edu/pubs/garden/az1153.pdf)
 • Planting Guidelines: Container Trees and Shrubs (http://ag.arizona.edu/pubs/garden/az1022.pdf)
 • TAMU Texas Forest Service (http://texastreeplanting.tamu.edu)
 • University of Florida (http://hort.ufl.edu/woody/planting)
 • International Society of Arboriculture (TreesAreGood.org)
Ornamental Trees for Dona Ana County

John M. White
Garden Curator and Certified Arborist
UTEP Chihuahuan Desert Gardens
Selecting a Tree

• When selecting a tree, consider the following:
 – The purpose of the tree
 – The mature size of the tree
 – Water requirements
 – Temperature and other weather-related conditions
 – Potential problems
The Right Tree in the Right Spot

Trees have different tolerance levels

- Soil pH – acidic or alkaline
- Temperature – cold or hot
- Water – high, medium or low
- Light – sun or shade
- Drainage – poor or well drained

For the right reason
Other Considerations

• Texture or apparent coarseness of the tree (both in leaf and without leaves)
• Leaf color
• Presence of flowers and fruit
• Fruit drop
• Whether the pollen presents a potential allergy problem. In the case of dioecious trees (trees that have male and female blossoms on different plants), a male tree may present a pollen problem while a female does not.
 – Trees with attractive flowers do not generally have high allergy potential.
Texas Mountain Laurel
Mescal Bean
Sophora secundiflora
Desert Willow - *Chilopsis linearis*

- Upright shrub or small tree that grows up to 25 feet.
- Light green narrow leaves 3 to 6 inches long.
- Drought tolerant.
- Likes heat and does not do well with late frosts.
- Flowers are large, fragrant, pink to purple.
Eastern Red Bud — *Cercis canadensis*

- Small tree, 30 feet in height.
- Native to the eastern U.S.
- Requires medium to high irrigation frequency
- Blooms with small, clustered rose-purple flowers before foliage comes out in the spring.
- May develop leaf scorch during the heat of summer.
Mexican redbud
Cercis canadensis var. *mexicana*
Mexican plum

Prunus mexicana
Screwbean mesquite, *Prosopis pubescens*
Honey Mesquite — Prosopsis glandulosa

- Seedpods
- Thorns
- Partial Shade
- Spreading Habit
- Low water use
Japanese Pagoda Tree

Sophora japonica

- Grows 40 to 60 feet in height.
- Drought tolerant
- Blooms creamy-white flowers in late summer
- Forms bean-like seed pods

http://www.colostate.edu/Dept/CoopExt/4dmg/Trees/pagoda.htm
Golden Rain Tree — *Koelreuteria paniculata*

- Small to medium size
- Slow to moderate growth rate
- Does well in alkaline soils
- Yellow flowers in late summer followed by interesting 3-sided “Chinese lantern” seed pods.
- May attract nuisance red-shouldered bugs which feed on seed pods.
Western soapberry
Sapindus drummondii
Texas Red Oak — *Quercus buckleyi*

- Reaches heights of 40 + feet.
- Dark green throughout summer and provides beautiful reds and oranges in fall color.
- Adapted to drier limestone soils and high pH levels.
- May have problems with Kermes scale.
Texas oak
(Buckley oak)
Quercus texana (Q. buckleyi)
Netleaf hackberry & bark

Celtis reticulata
Netleaf Hackberry — *Celtis reticulata*

- Grows to 40 feet in height
- Low to medium water needs
- Well adapted to alkaline soils
- Very drought tolerant
- Susceptible to galls

http://www.treenm.com/nm-tree-species/netleaf-hackberry/
Chinquapin Oak – *Quercus muhlenbergii*

- Large tree – 50’ x 40’
- Shiny green leaves with smooth, wavy margins
- Medium to high irrigation needs

https://www.extension.iastate.edu/forestry/iowa_trees/trees/chinkapin_oak.html

Photo by Oscar Maestas
Southern Live Oak — *Quercus virginiana*
Western Live Oak — *Quercus fusiformis*

- Large, sprawling tree 40 to 60 feet in height
- Medium water needs
- Evergreen
Common Jujube — Ziziphus jujuba

- Chinese date or red date
- 15 to 30 feet in height
- Low to moderate irrigation needs.
- Very hard, strong wood.
- Produces an edible fruit.
Graves oak, *Quercus gravesii*
Mexican white oak

Quercus polymorpha, TD, variable
Chinese pistache

Pistache chinensis
Italian stone pine

Pinus pinea
Deodar cedar
Cedrus deodara
Gray oak
Quercus grisea
Lacebark Elm – *Ulmus parvifolia*

- Grows 50 to 80 feet in height.
- Moderate irrigation
- Pendulous branches with leaves that turn yellow in the fall.
- Bark naturally flakes off to reveal colors in the trunk.
- Resistant to Dutch Elm Disease.
- Not an aggressive tree.
Lacebark elm, *Ulmus parvifolia*
Lacebark elm, *Ulmus parvifolia*
Cedar Elm — *Ulmus crassifolia*

- Native to Texas
- Reaches heights of 40 to 60 feet.
- Low to medium water needs
- Does well in alkaline soils
- Heat tolerant
- Resistant to elm leaf beetle.
- Susceptible to Dutch Elm Disease
Afghan Pine — Pinus eldarica

- Evergreen
- Large tree – 30 to 50 feet in height
- Does well in alkaline soils
- Medium water needs
- Limited pest and disease problems.

https://ag.arizona.edu/pima/gardening/aridplants/Pinus_eldarica.html
Arizona Cypress — *Cupressus arizonica*

- Large evergreen tree
- Used frequently for windbreaks
- Drought tolerant but does require water!
- Insect resistant unless stressed

https://ag.arizona.edu/yavapai/anr/hort/byg/archive/azcypress2013.html
Pinon — *Pinus edulis*

- Native tree
- Slow growing
- Drought tolerant
- Does better in cooler climate
- Pinon needle scale a problem
- Really don’t recommend for Las Cruces
Bigtooth maple

Acer grandidentatum
Ash Tree

• Really not recommended!
• Arizona Ash – *Fraxinus velutina* and *Fraxinus velutina ‘Modesto’* and others
• Medium size tree – 40 feet in height
• Requires moderate to high irrigation
• Susceptible to many insect problems including Emerald Ash Borer (not in NM yet!).

http://treedoctort.nyr.msue.edu/ash/ashtree_id.html

www.nj.gov
Trees NOT Recommended

- Salt Cedar – high water needs, produces salt
- Mulberry –
 - Female tree is messy with fruit
 - Fruitless male causes allergy problems with pollen
- Tree of Heaven - aggressive
- Ornamental Pear – iron deficiency problems
- Globe Willow – iron deficiency problems
- Austree – high water needs
Other Trees Seen in Las Cruces

- Italian Cypress – Undiagnosed problems
- Arizona Sycamore – High water needs
- Cottonwood – Needs lots of water
- Chitalpa – Leaf scorch caused by Xylella fastidiosa
- Catalpa – Iron chlorosis
- Magnolia – Native of Southern states. Struggles here.
Other Trees Seen in Las Cruces

- Siberian Elm – Seeds profusely, aggressive
- Mexican Elder – Cannot withstand late freezes
- Palo Verde – Freeze Susceptible
- Willows and Cottonwoods – High water use, disease prone
ANCIENT DRIP IRRIGATION USING OLLAS
IRRIGATION

- Art and Science of providing the proper quantity of water to plant roots when it is needed.
- Plants and irrigation techniques should be suited to:
 - Climate (macro and micro)
 - Topography
 - Soil
 - Available water (quality and quantity)
In the arid southwest, tree roots can extend horizontally 3 to 5 times the height of the tree, and a depth of 1.5’ to 3’
TERRY MIKEL’S LAW OF PIZZA

- A = \pi r^2
- 10” pizza = 79 in²
- 12” pizza = 113 in²
- 20” pizza = 314 in²
- As the radius of the root system doubles, the area of the root system increases by four times
Table is 3’ x 6’ (36 ft²)
1 inch of water on that table weighs...
187 lbs
6 inches of water = 1,122 lbs
Soil compaction can occur during flood irrigation
Water also displaces air potentially leading to plant stress
HOW DOES WATER BEHAVE IN SOIL?

1. Gravity moves it in (infiltration)
2. Gravity + Capillary Action moves it down and horizontally (percolation)
3. Evaporation and transpiration removes water from soil
4. Capillary action moves it upward
5. Diurnal effect
 • Day - dries
 • Night - equilibrates
The kind of soil you have in your yard will determine how long and how often you should water.

There are two ways to determine your soil texture, a soil testing kit, sent to a State Agricultural College

The feel test with your hands.
SOIL CHARACTERISTICS AND THEIR RELATIVE SOIL PARTICLE SIZES

Relative soil particle sizes

- **Gravel**
- **Sand**
- **Silt**
- **Clay**

Size comparison chart in millimeters (mm) and fractions of an inch (inches):

- 0 mm
- 1 mm
- 2 mm
- 3 mm
- 4 mm
- 5 mm

- 0 inches
- 1/16 inches
- 2/16 inches
- 3/16 inches
IRRIGATION PRINCIPLES

- 1 inch of water will:
 + Go 12” deep in a sandy loam
 + Go 8-10” deep in a loam
 + Go 4-6” deep in a clay loam

- To irrigate each soil to a three foot depth, you need to apply:
 + 3” on a sandy loam
 + 4” on a loam
 + 6” on a clay loam
MORE IRRIGATION PRINCIPLES

- 1 gallon of water will irrigate roughly 1 ft3 of soil
<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Maximum Infiltration Rate</th>
<th>Wetting Pattern</th>
<th>Maximum Wetted Diameter</th>
<th>Available Water (AW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse (sandy loam)</td>
<td>.72 - 1.25 inches per hour</td>
<td>Coarse</td>
<td>1.0 - 3.0 feet</td>
<td>1.4 inches per foot</td>
</tr>
<tr>
<td>Medium (loam)</td>
<td>.25 - .75 inches per hour</td>
<td>Medium</td>
<td>2.0 - 4.0 feet</td>
<td>2.0 inches per foot</td>
</tr>
<tr>
<td>Fine (clay loam)</td>
<td>.13 - .25 inches per hour</td>
<td>Fine</td>
<td>3.0 - 6.0 feet</td>
<td>2.5 inches per foot</td>
</tr>
</tbody>
</table>
ONE, TWO, THREE RULE - I

Annual or Perennial

Shrub

Tree
Irrigate plants to the proper depth and check with a probe.

<table>
<thead>
<tr>
<th>1 foot</th>
<th>2 feet</th>
<th>3 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>Shrub</td>
<td>Annual or Perennial</td>
</tr>
</tbody>
</table>
Allow plants to utilize the water until the soil surface dries to a depth of (early morning):

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>Water Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual or Perennial</td>
<td>1 inch</td>
</tr>
<tr>
<td>Shrub</td>
<td>2 inches</td>
</tr>
<tr>
<td>Tree</td>
<td>3 inches</td>
</tr>
</tbody>
</table>
This is the irrigation frequency for that soil at that time of year!
IRRIGATION METHODS - DRIP

- Easy to install, but does not keep up with growth on large woody plants
- You can use multiport heads for these situations
- I think of it as a “disposable system” which works for some natives (i.e. by the time the system disintegrates, natives may be able to survive on natural precipitation.)
IRRIGATION METHODS

- Drip/Trickle
- Micro-spray
- Sprinkler/Spray
- Bubblers
- Soaker Hose
- Furrow/Basin
- Garden Hose
DRIP IRRIGATION SUPPLIES
DRIP IRRIGATION VALVE ASSEMBLY

Valve

Y Screen Filter

Pressure Reducer
Maximum System Delivery Requirements

(In Gallons per Hour Based on 1 Hour Cycle)

<table>
<thead>
<tr>
<th>Plant Size</th>
<th>Desert Native</th>
<th>Non Native</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large to Medium trees</td>
<td>16 to 62 gallons per hour</td>
<td>32 to 128 gallons per hour</td>
</tr>
<tr>
<td>18’ to 32’ Canopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small trees & large shrubs</td>
<td>4 gallons/hour</td>
<td>8 Gallons/hour</td>
</tr>
<tr>
<td>9’ Canopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium shrubs</td>
<td>2 gallons</td>
<td>4 gallons</td>
</tr>
<tr>
<td>3.5’ to 5’ wide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small shrubs and groundcover</td>
<td>2 gallons or less</td>
<td>2 gallons or less</td>
</tr>
</tbody>
</table>
Recommended Emitter Spacing and Run Time in Medium Soils

<table>
<thead>
<tr>
<th>Water Depth</th>
<th>Emitter Spacing</th>
<th>Emitter Flow GPH</th>
<th>Max Run Time in Minutes</th>
<th>Max Run Time in Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 inches</td>
<td>24 inches</td>
<td>0.5</td>
<td>211 min</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>106 min</td>
<td>1.76 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>53 min</td>
<td>0.88 hrs</td>
</tr>
<tr>
<td>18 inches</td>
<td>36 inches</td>
<td>1.0</td>
<td>357 min</td>
<td>5.95 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>178 min</td>
<td>2.98 hrs</td>
</tr>
<tr>
<td>24 inches</td>
<td>48 inches</td>
<td>2.0</td>
<td>248 min</td>
<td>4.13 hrs</td>
</tr>
</tbody>
</table>
IRRIGATION METHODS-SPRAY HEADS

- Excellent for turf and ground covers
- Not as good for trees and shrubs
- Need a good design (consider hiring a professional to design the system)
- Still need repair and maintenance
- Do not mix and match incompatible nozzles and head types or brands.
RETROFITTING YOUR SPRAY SYSTEM SAVES WATER
IRRIGATION METHODS - BUBBLERS

- Great for shrubs and trees in basins
- Need to have level ground and a berm
- Do not put on same station (valve) as turf or drip
IRRIGATION METHODS-AUTOMATIC TIMERS

- Reset times for different times of year
- Check system periodically to make sure it is working correctly
- Turn off after rains
Soaker hoses work great for trees, shrubs, vegetables, and annuals.

Oscillating sprinklers can work well for those on a budget, but there will be dry spots.

Good, old fashioned hose spraying works well for natives that only need periodic watering during drought.
IRRIGATION WRAP-UP

- Do not overwater or fertilize native and/or drought tolerant plants and cause them to grow too much
- Do not assume that just because a plant is native and/or drought tolerant that it does not need irrigation
- Plants need some water in winter, evergreens also need adequate water in winter
John M. White
Garden Curator
UTEP Chihuahuan Desert Garden
500W. University Avenue
El Paso, TX 79968
(915) 747-5335
jmwhite@utep.edu
Pruning Basics

The art and science of pruning
The reason we prune is for SAFTEY. Or as stated in the BMP manual……to reduce the risk of failure.

Other Reasons:
- Provide clearance
- Maintain health
- Improve views
- Influence flowers or fruit
- Reduce shade
- Improve aesthetics

Figure 1. Problems can develop on trees—including codominant stems; included bark; broken and dead branches; suckers and watersprouts; and large, low limbs that require removal.
Where do I prune my branch?

Remember a pruning cut is a wound.
Always prune to a bud or branch axil.

Never leave stubs.
Branch Collar: a "shoulder" or bulge formed at the base of a branch by the annual production of overlapping layers of branch and stem tissues.
Strong branch attachment
Target pruning is where you try to make all of your pruning cuts just outside the branch collar. Inside the collar is called a flush cut and too much outside the collar is called a stub cut.
Boundaries Form At The Base Of Branches As They Die
Pruning - Proper pruning can reduce future problems.

Fig. 1.16 CODIT. Wall 1 is formed when the tree responds to wounding by “plugging” the upper and lower vascular elements to limit vertical spread of decay. Wall 2 is formed by the last cells of the growth ring limiting inward spread. Wall 3 is the ray cells that compartmentalize decay by limiting lateral spread. Wall 4 (not shown), the strongest wall, is the new growth ring that forms internally.

Fig. 1.17 Compartmentalization of decay. Wall 4 prevents decay from entering new wood. Wall 3, not shown, and Wall 2 have failed to prevent the decay from spreading laterally and internally.
Compartmentalization Of Decay In Trees

Boxelder CODIT2
Woundwood: lignified, differentiated tissues produced on woody plants as a response to wounding (also known as callus tissue).
Are there different types of pruning and are they all good?
Stubs will die and provide access for insects and disease into the interior of the tree.

(1 of the 3 D’s when pruning)
Remove dead wood.
Topping equals weak attachment and decay.
Pruning from the outside in will reduce the risk of this happening.

Lions tailing
Things to consider
Wounds larger than 4” in diameter usually develop decay and rarely grow over the wound.
Included Bark: bark enclosed between branches with narrow angles of attachment, forming a wedge between the branches.
For branches over 1 inch diameter use a hand saw.
Three Cut Method
1, 2, 3 It’s that simple

- Under cut
- Top cut
- Final cut
Proper pruning will keep your tree healthy. When do I prune and why?
Evergreens – pines, junipers, cedars...

Rarely need pruning. Prune only if you want to raise the crown. Prune anytime.
Spring Flowering Trees

Prune after they bloom. Flower buds are produced on previous years wood.
What about palms?
No pruning is needed on this cabbage palm because all fronds are green
Severe over-pruning of date palm

- In addition to looking goofy, over-pruning eventually causes a narrowing of the trunk on some palms at the point where the fronds were removed.
Over-pruning date palms

- Date palms are often over-pruned in this fashion which causes stress on the palm by removing too much photosynthetic capacity from the canopy.
What about pruning paint?
Only if you live in an area with oak wilt and are pruning an oak tree.