We are happy to present our new Jornada Water System customers with the 2016 Community Confidence Report on Water Quality. It’s the water you drink... now it comes with a list of ingredients. According to the Safe Drinking Water Act (SDWA), anything in water that is not H2O is considered a contaminant without regard to whether it is harmful or not. The Environmental Protection Agency (EPA) through the regulatory process has set limits, called Maximum Contaminant Levels (MCLs), for certain harmful contaminants that may be found in drinking water. But, there are many potential contaminants that, although not common, may find their way into source waters. For this reason, drinking water regulations require monitoring for many possible contaminants. Not all contaminants are regulated. MCLs have not been developed for all contaminants that are monitored. The presence of a contaminant does not necessarily pose a health risk.

This report explains where our water comes from, what it contains, and any known health risks that may exist for the level of contaminants in our drinking water. The New Mexico Environment Department (NMED) monitors up to 121 potential contaminants at every well in the City’s Municipal Water Supply System at least once every three years. This report presents the results for all potential contaminants of drinking water during the 2016 calendar year or the most recent year sampled by EPA approved methods and certified analytical laboratories in accordance with the SDWA.

Source Water Assessment and Protection Program (SWAPP)
The Municipal Water Supply System is well maintained and operated, and sources of drinking water are generally protected from potential sources of contamination based on well construction, hydro-geologic settings, and system operations and management. The susceptibility rank of the entire water system is high. Please contact the City Water Section of Utilities to discuss the findings of the SWAPP report.

The Source of Your Drinking Water
The Mesilla Park Manor water system is a community water system with approximately 243 service connections serving an estimated population of approximately 620. The system consists of 2 production wells and 2 pressure tanks. The system wells are at depths of 350 feet into the Mesilla bolson. While these deep groundwater supplies provide for protection from many surface contaminants and drought resilience, small amounts of naturally occurring minerals dissolve into the water and account for moderate levels of calcium, manganese, and iron. This common “hard water” of the southwest can affect the aesthetic quality of the water by increasing hardness and by altering the color and taste slightly. The Source Water Assessment by NMED Drinking Water Bureau provides baseline data about the quality of our water before it is treated and distributed to consumers. This is important because it identifies the origins of potential contaminants, and indicates the susceptibility of our water system to contamination. Because we pump water from deep aquifers the likelihood of such contamination is low, but it can occur under some circumstances and must be evaluated.

Learn More about Your Drinking Water
Amendments to the SDWA in 1996 require all public water supply systems to provide an annual “Consumer Confidence Report” to their customers. We encourage public interest and participation in our community’s water quality and decisions affecting drinking water. The Water Section of Utilities holds public meetings as needed when specific issues concerning drinking water affect our community. Otherwise, the most effective way to make comments or suggestions is to telephone or write directly to the Administrator of the Water Section (575-3515). Concerns may also be brought before the City Council in their biweekly public meeting or the Las Cruces Utilities Board in their monthly public meeting. The Water Section does not, at this time, conduct regular public meetings, which are devoted to drinking water issues. Water quality data for the Municipal Water Supply System and more information about the Water Section are available at www.las-cruces.org. The Administrator and her staff will be happy to answer any questions, or discuss suggestions you may have, about our drinking water.

Contacts for Information:
ADRIENNE L. WIDMER, P.E., ADMINISTRATOR WATER SECTION, LAS CRUCES UTILITIES
Utilities Department: 575-528-3515
P.O. Box 20000, Las Cruces 88004 • www.las-cruces.org
NMED DRINKING WATER BUREAU
575-328-6300, 1170 N. Solano, Las Cruces 88005
www.nmenv.state.nm.us
EPA SAFE DRINKING WATER HOTLINE: 800-426-4791
www.epa.gov/safewater/heathalh.html
www.epa.gov/ogwdw/agua/aapsaldau.html (in Spanish)
EPA OFFICE OF GROUND WATER AND DRINKING WATER
www.epa.gov/ogwdw
www.epa.gov/safewater/agua.html (in Spanish)
AMERICAN WATER WORKS ASSOCIATION: www.awwa.org
THE GROUNDWATER FOUNDATION: www.groundwater.org

This report can be made available in alternative formats upon request. To make a request call voice telephone 528-3213 or TTY 528-2041. Entiendo contiene información importante sobre la calidad del agua en su comunidad. Tradúzcala o hable con alguien que lo entienda bien.
REGULATED CONTAMINANTS

The following table presents a summary of results from water testing completed by both the NMED Drinking Water Bureau and the City during the 2016 calendar year or the most recent year sampled per the regulated sampling cycle as required by the SDWA. The table contains the name of each contaminant, the highest level allowed by regulation (MCL), the ideal goals for public health (MCLGs), the highest single amount found among all samples taken, the expected sources of such contamination, and the incidence of violations.

MAXIMUM CONTAMINANT LEVEL (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MAXIMUM CONTAMINANT LEVEL GOAL (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health, i.e. zero risk. The MCLG usually accepts a risk of 1 in 1,000,000 or 1 in 100,000 persons depending on the contaminant.

ACTION LEVEL (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that the water supply system must follow.

Additional Information

EPA prescribes limits on the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water. Drinking water, including bottled water, may reasonably be expected to contain small amounts of certain contaminants. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. New Mexico Drinking Water System is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water testing, methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Sources of drinking water for both tap water and bottled water include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, as well as substances resulting from the presence of animals or human activity. Contaminants that may be present in source water include:

(a) **Microbial contaminants,** such as viruses, bacteria, and protozoa (e.g. Cryptosporidium, E. coli, Giardia) may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildfires.

(b) **Inorganic contaminants,** such as salts and metals, can be naturally occurring or result from urban storm runoff; industrial or domestic wastewater discharges, oil and gas production, mining, and farming.

(c) **Pesticides and herbicides** may come from sources such as agriculture, storm-water runoff, and residential uses.

(d) **Organic chemical contaminants,** including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and may also come from gas stations, urban storm-water runoff, and septic systems.

(e) **Radioactive contaminants** can be naturally occurring or result from oil and gas mining and production activities. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. Guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from EPA’s Safe Drinking Water Hotline. More information about contaminants and potential health effects can also be obtained via the Hotline.

WATER QUALITY TEST RESULTS

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow by regulation (MCL), the ideal goals for public health (MCLGs), the highest single amount found among all samples taken, the expected sources of such contamination, and the incidence of violations.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Highest Locational Running Annual Average or LRAA: Arithmetic average of analytical results for samples taken at a specific monitoring location during the previous four calendar quarters.

Highest Level Detected: The highest single amount found among all samples taken.

Definitions: The following tables include scientific terms and measures, some of which may require explanation.

ADDITIONAL COMPOUNDS HAVING ZERO DETECTION FOR YOUR INFORMATION

Tetrachloroethylene ppm 0.005 0 0 Discharge from factories and dry cleaners None

Dichloromethane ppm 0.005 0 0 Discharge from drug and chemical factories None

Xylenes, total ppm 10 10 0 Discharge from petroleum and chemical factories None

Vinyl chloride ppm 0.002 0 0 Leaching from PVC pipes; discharge from plastic factories None

Toxaphene ppm 0.003 0 0 Discharge from petroleum factories None

Dalapon ppm 0.2 0.2 0 Runoff from herbicides None

Endrin ppm 0.002 0.002 0 Residue of banned herbicide None

PCBs ppm 0.0005 0 0 Leaching from gas storage tanks and landfills None

Fluorescent ppm 0.002 0.002 0 Residue of banned herbicide None

Benzene ppm 0.005 0 0

Halogenated

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Source</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Detected Levels [1]</th>
<th>Major Sources</th>
<th>Violations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBs</td>
<td>ppm</td>
<td>0.0005</td>
<td>0</td>
<td>0</td>
<td>Leaching from gas storage tanks and landfills</td>
<td>None</td>
</tr>
<tr>
<td>Haloacetic Acids</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloachloroacids</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetonitriles</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetamides</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>